Practical Methods in Electron Microscopy

Volume 16

Series editor:

Audrey M. Glauert

Clare Hall
University of Cambridge
U.K.
Contents

Editor's preface vii
Author's preface and acknowledgements ix
Symbols and abbreviations xiii

1 Introduction

1.1 What is electron-probe X-ray microanalysis? 1
1.2 Interactions of the electron beam with the specimen 2
1.3 Analysis of biological specimens 5
1.4 Capabilities of electron-probe X-ray microanalysis 6
1.5 Safety 7
 1.5.1 The specimen 8
 1.5.2 Hazardous chemicals 9
 1.5.3 Glass knives 10
 1.5.4 Low temperature work 10
 1.5.4a Liquid nitrogen 10
 1.5.4b Liquid cryogens 12
 1.5.4c Cooled apparatus 12
 1.5.4d Containers 13

2 Production of X-rays

2.1 Excitation of X-rays 15
2.2 Characteristic X-rays 18
2.3 Continuum X-rays 22
2.4 Factors affecting the production of X-rays 23
 2.4.1 Critical excitation potential 23
 2.4.2 Ionization cross-section and fluorescent yield 24
2.5 Factors affecting emergence of X-rays from the specimen 26
 2.5.1 X-ray fluorescence 26
 2.5.2 Absorption of X-rays 27
3 Interaction of the electron beam with the specimen

3.1 The interaction volume

3.1.1 Effect of accelerating voltage on the interaction volume

3.1.2 Effects of specimen mass and thickness on the interaction volume

3.1.3 X-ray production from thin specimens

3.1.4 X-ray production from semi-thick specimens

3.1.5 X-ray production from thick specimens

3.2 Damage to the specimen during the production of X-rays

3.2.1 Mechanisms by which beam damage occurs

3.2.2 Accelerating voltage and electron dose

3.2.3 Specimen composition and beam damage

3.2.4 Relevance of beam damage to X-ray microanalysis

3.2.4a Loss of elements

3.2.4b Loss of mass from dry specimens

3.2.4c Loss of mass from hydrated specimens

3.2.4d Loss of mass from bulk specimens

4 The generation and collection of X-rays

4.1 Electron microscopes for X-ray microanalysis

4.1.1 The probe current

4.1.1a The effect of the electron emitter on probe current

4.1.1b Measurement of the probe current

4.1.2 The vacuum system and contamination

4.1.3 Production of extraneous X-rays

4.1.4 Specimen holders

4.2 Energy dispersive X-ray detectors

4.2.1 The SiLi detector crystal

4.2.2 Structure of the EDS detector

4.2.3 X-ray detection in an EDS system

4.3 Spectral modifications

4.3.1 Detector efficiency

4.3.1a Efficiency for X-rays from elements of low atomic number

4.3.1b Efficiency for X-rays from elements of high atomic number
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2</td>
<td>Peak broadening and peak overlap</td>
<td>73</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Sum peaks</td>
<td>76</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Dead-time correction</td>
<td>77</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Low energy tailing</td>
<td>78</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Escape peaks</td>
<td>79</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Silicon peaks</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Detector performance</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Beam-specimen-detector geometry</td>
<td>82</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Solid angle</td>
<td>82</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Take-off angle</td>
<td>84</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Effects of tilting the specimen</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Interception of backscattered electrons</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Spectrum processing and methods for quantification</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Background subtraction and estimation of net peak integrals</td>
<td>91</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Linear interpolation</td>
<td>93</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Background modelling</td>
<td>95</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Digital filtering</td>
<td>97</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Filtered least squares (FLS) fitting</td>
<td>99</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Deconvolution of overlapping peaks</td>
<td>100</td>
</tr>
<tr>
<td>5.1.5a</td>
<td>Overlap coefficients</td>
<td>100</td>
</tr>
<tr>
<td>5.1.5b</td>
<td>Deconvolution using reference spectra</td>
<td>102</td>
</tr>
<tr>
<td>5.1.5c</td>
<td>Practical problems encountered in peak deconvolution</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Quantification</td>
<td>103</td>
</tr>
<tr>
<td>5.3</td>
<td>Quantification of elements in thin sections</td>
<td>103</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Measurement of concentrations as elemental ratios</td>
<td>103</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Measurement of concentration as mass per unit volume</td>
<td>106</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Continuum normalization</td>
<td>109</td>
</tr>
<tr>
<td>5.3.3a</td>
<td>The energy band for the estimation of the continuum</td>
<td>111</td>
</tr>
<tr>
<td>5.3.3b</td>
<td>Corrections to the measurement of the continuum</td>
<td>112</td>
</tr>
<tr>
<td>5.3.3c</td>
<td>Estimation of the G-factor</td>
<td>116</td>
</tr>
<tr>
<td>5.3.3d</td>
<td>Effects of change of mass</td>
<td>118</td>
</tr>
<tr>
<td>5.3.3e</td>
<td>Advantages and disadvantages of continuum normalization</td>
<td>119</td>
</tr>
</tbody>
</table>
5.4 Quantification of elements in semi-thick sections

5.4.1 The continuum normalization method
5.4.2 Peak-to-background ratios

5.5 Quantification of elements in bulk specimens

5.5.1 Direct comparison of net peak intensities
5.5.2 Peak-to-background ratios
5.5.3 Ionization function curves

6 Specimen preparation

6.1 Guidelines for choosing a method for specimen preparation

6.2 Specimen supports for X-ray microanalysis

6.3 Air-drying

6.4 Standard chemical fixation and embedding

6.4.1 Loss of elements during standard procedures
6.4.2 Addition of elements during standard procedures
6.4.3 Examples of X-ray microanalysis of specimens prepared by standard methods

6.4.3a Identification of particulate materials
6.4.3b Precipitation methods for the localization of elements
6.4.3c Validation of histochemical procedures

6.5 Low temperature methods for specimen preparation

6.5.1 Treatment of the specimen before cryofixation

6.5.1a The effects of dissection
6.5.1b The effects of desiccation
6.5.1c The effects of cryoprotectants

6.5.2 Cryofixation

6.5.2a Cryofixation of specimens in vivo
6.5.2b Cryofixation of isolated functioning preparations
6.5.2c Cryofixation of isolated or cultured cells
6.5.2d Cryofixation of bulk specimens

6.5.3 Storage after cryofixation

6.5.4 Treatment of the specimen after cryofixation

6.5.5 Thin cryosections for EPXMA

6.5.5a Preparation of thin cryosections
6.5.5b Freeze-drying of cryosections
6.5.5c Storage of freeze-dried cryosections
6.5.6 Methods for embedding cryofixed specimens 167
 6.5.6a Freeze-drying and resin-embedding 168
 6.5.6b Freeze-substitution and resin-embedding 170
6.5.7 Preparation of semi-thick cryosections 172
6.5.8 Preparation of bulk specimens 173
6.6 The preparation of fluids for analysis 174
 6.6.1 Direct deposition of droplets 174
 6.6.2 Preparation of droplets by spraying 175
 6.6.3 Problems during preparation and analysis of fluids 176

7 Qualitative analysis of the specimen 185
7.1 Preparing for analysis 185
 7.1.1 General cleanliness 185
 7.1.2 Selecting operating conditions for the electron microscope 186
 7.1.2a General operating conditions 187
 7.1.2b Choice of accelerating voltage 187
 7.1.2c Choice of apertures 189
 7.1.2d Choice of probe current 190
 7.1.2e Duration of analysis 191
 7.1.2f Choice of magnification 191
 7.1.2g Minimizing extraneous contribution 192
 7.1.2h Minimizing beam damage 194
 7.2 The steps in an analysis 194
 7.2.1 Calibrating the detector 194
 7.2.2 Analysis of thin or semi-thick dry sections 195
 7.2.3 Analysis of bulk specimens 196
 7.3 Qualitative identification of peaks present in the spectrum 198
 7.4 What might go wrong? 200
 7.4.1 No counts collected in the spectrum 200
 7.4.2 Low count rate 200
 7.4.3 Count rate too high 201
 7.4.4 Presence or absence of peaks in the spectrum 201

8 Quantitative analysis of the specimen 203
8.1 Preparing for quantitative analysis 203
 8.1.1 Preparing peak profiles for FLS fitting 203
 8.1.2 Determination of relative detector efficiency 206
8.2 Standards for quantitative analysis 209
8.2.1 Mineral salts 209
8.2.2 Standards based on proteins 210
8.2.3 Standards based on embedding resins 211
8.2.4 Preparation of standards for quantitative analysis 212
 8.2.4a General considerations in the preparation of standards 212
 8.2.4b Thin protein films 213
 8.2.4c Cryosectioned standards 214
 8.2.4d Peripheral standards 217
 8.2.4e Standards based on epoxy resins 217
 8.2.4f Standards based on aminoplastic resins 218
8.2.5 Standards for the analysis of semi-thick and bulk specimens 220
8.2.6 Analysis of the standard and determination of calibration constants 221
8.3 Quantitative analysis of the specimen 223
8.3.1 Quantitative analysis of thin sections 223
 8.3.1a Measurement of concentrations as elemental ratios or as mass per unit volume 223
 8.3.1b Continuum normalization 225
 8.3.1c What might go wrong? 227
8.3.2 Quantitative analysis of semi-thick and bulk specimens 229
8.3.3 Interpretation of results 231
 8.3.3a Accuracy 231
 8.3.3b Precision 232
 8.3.3c Minimum detectable concentrations 233
 8.3.3d Use of the term relative mass fraction 235
 8.3.3e Resin-embedded specimens 235
8.4 Measurement of water content 236
8.4.1 Measurement of dry mass 237
 8.4.1b Measurement of water content in semi-thick, frozen-hydrated sections 239
8.4.2 Measurement of water content in bulk hydrated specimens 241
8.4.3 Conversion to millimolar concentrations 243
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Mapping techniques</td>
<td>247</td>
</tr>
<tr>
<td>9.1</td>
<td>Dot mapping</td>
<td>247</td>
</tr>
<tr>
<td>9.2</td>
<td>Digital mapping</td>
<td>248</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Advantages of digital mapping</td>
<td>249</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Qualitative digital mapping</td>
<td>250</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Quantitative digital mapping</td>
<td>251</td>
</tr>
<tr>
<td>9.2.3a</td>
<td>Advantages of quantitative mapping</td>
<td>253</td>
</tr>
<tr>
<td>9.2.3b</td>
<td>Disadvantages of quantitative mapping</td>
<td>255</td>
</tr>
<tr>
<td>9.3</td>
<td>Conclusions</td>
<td>256</td>
</tr>
</tbody>
</table>

Appendix 1: Sources of information | 259 |
Appendix 2: List of manufacturers and suppliers | 261 |
Appendix 3: Addresses of manufacturers and suppliers | 267 |
Subject index | 271 |