Misha Gromov

with Appendices by M. Katz, P. Pansu, and S. Semmes

Metric Structures for Riemannian and Non-Riemannian Spaces

Based on Structures Métriques des Variétés Riemanniennes
Edited by J. LaFontaine and P. Pansu
English Translation by Sean Michael Bates

Birkhäuser
Boston • Basel • Berlin
Contents

Preface to the French Edition xi
Preface to the English Edition xiii
Introduction: Metrics Everywhere xv

Length Structures: Path Metric Spaces 1
A. Length structures 1
B. Path metric spaces 6
C. Examples of path metric spaces 10
D. Arc-wise isometries 22

2 Degree and Dilatation 27
A. Topological review 27
B. Elementary properties of dilatations for spheres 30
C. Homotopy counting Lipschitz maps 35
D. Dilatation of sphere-valued mappings 41
E+ Degrees of short maps between compact and noncompact manifolds 55

3 Metric Structures on Families of Metric Spaces 71
A. Lipschitz and Hausdorff distance 71
B. The noncompact case 85
C. The Hausdorff-Lipschitz metric, quasi-isometries, and word metrics 89
D+ First-order metric invariants and ultralimits 94
E+ Convergence with control 98

3½+ Convergence and Concentration of Metrics and Measures 113
A. A review of measures and mm spaces 113
B. □λ-convergence of mm spaces 116
C. Geometry of measures in metric spaces 124
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Basic geometry of the space \mathcal{X}</td>
<td>129</td>
</tr>
<tr>
<td>E</td>
<td>Concentration phenomenon</td>
<td>140</td>
</tr>
<tr>
<td>F</td>
<td>Geometric invariants of measures related to concentration</td>
<td>181</td>
</tr>
<tr>
<td>G</td>
<td>Concentration, spectrum, and the spectral diameter</td>
<td>190</td>
</tr>
<tr>
<td>H</td>
<td>Observable distance H_λ on the space \mathcal{X} and concentration $X^n \rightarrow X$</td>
<td>200</td>
</tr>
<tr>
<td>I</td>
<td>The Lipschitz order on \mathcal{X}, pyramids, and asymptotic concentration</td>
<td>212</td>
</tr>
<tr>
<td>J</td>
<td>Concentration versus dissipation</td>
<td>221</td>
</tr>
<tr>
<td>4</td>
<td>Loewner Rediscovered</td>
<td>239</td>
</tr>
<tr>
<td>A</td>
<td>First, some history (in dimension 2)</td>
<td>239</td>
</tr>
<tr>
<td>B</td>
<td>Next, some questions in dimensions ≥ 3</td>
<td>244</td>
</tr>
<tr>
<td>C</td>
<td>Norms on homology and Jacobi varieties</td>
<td>245</td>
</tr>
<tr>
<td>D</td>
<td>An application of geometric integration theory</td>
<td>261</td>
</tr>
<tr>
<td>E</td>
<td>Unstable systolic inequalities and filling</td>
<td>264</td>
</tr>
<tr>
<td>F</td>
<td>Finer inequalities and systoles of universal spaces</td>
<td>269</td>
</tr>
<tr>
<td>5</td>
<td>Manifolds with Bounded Ricci Curvature</td>
<td>273</td>
</tr>
<tr>
<td>A</td>
<td>Precompactness</td>
<td>273</td>
</tr>
<tr>
<td>B</td>
<td>Growth of fundamental groups</td>
<td>279</td>
</tr>
<tr>
<td>C</td>
<td>The first Betti number</td>
<td>284</td>
</tr>
<tr>
<td>D</td>
<td>Small loops</td>
<td>287</td>
</tr>
<tr>
<td>E</td>
<td>Applications of the packing inequalities</td>
<td>294</td>
</tr>
<tr>
<td>F</td>
<td>On the nilpotency of π_1</td>
<td>295</td>
</tr>
<tr>
<td>G</td>
<td>Simplicial volume and entropy</td>
<td>302</td>
</tr>
<tr>
<td>H</td>
<td>Generalized simplicial norms and the metrization of homotopy theory</td>
<td>307</td>
</tr>
<tr>
<td>I</td>
<td>Ricci curvature beyond coverings</td>
<td>316</td>
</tr>
<tr>
<td>6</td>
<td>Isoperimetric Inequalities and Amenability</td>
<td>321</td>
</tr>
<tr>
<td>A</td>
<td>Quasiregular mappings</td>
<td>321</td>
</tr>
<tr>
<td>B</td>
<td>Isoperimetric dimension of a manifold</td>
<td>322</td>
</tr>
<tr>
<td>C</td>
<td>Computations of isoperimetric dimension</td>
<td>327</td>
</tr>
<tr>
<td>D</td>
<td>Generalized quasiconformality</td>
<td>336</td>
</tr>
<tr>
<td>E</td>
<td>The Varopoulos isoperimetric inequality</td>
<td>346</td>
</tr>
<tr>
<td>7</td>
<td>Morse Theory and Minimal Models</td>
<td>351</td>
</tr>
<tr>
<td>A</td>
<td>Application of Morse theory to loop spaces</td>
<td>351</td>
</tr>
<tr>
<td>B</td>
<td>Dilatation of mappings between simply connected manifolds</td>
<td>357</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>26.</td>
<td>Stories from the past</td>
<td>477</td>
</tr>
<tr>
<td>27.</td>
<td>Regular mappings</td>
<td>479</td>
</tr>
<tr>
<td>28.</td>
<td>Big pieces of bi-Lipschitz mappings</td>
<td>480</td>
</tr>
<tr>
<td>29.</td>
<td>Quantitative smoothness for Lipschitz functions</td>
<td>482</td>
</tr>
<tr>
<td>30.</td>
<td>Smoothness of uniformly rectifiable sets</td>
<td>488</td>
</tr>
<tr>
<td>31.</td>
<td>Comments about geometric complexity</td>
<td>490</td>
</tr>
<tr>
<td>IV.</td>
<td>An introduction to real-variable methods</td>
<td>491</td>
</tr>
<tr>
<td>32.</td>
<td>The Maximal function</td>
<td>491</td>
</tr>
<tr>
<td>33.</td>
<td>Covering lemmas</td>
<td>493</td>
</tr>
<tr>
<td>34.</td>
<td>Lebesgue points</td>
<td>495</td>
</tr>
<tr>
<td>35.</td>
<td>Differentiability almost everywhere</td>
<td>497</td>
</tr>
<tr>
<td>36.</td>
<td>Finding Lipschitz pieces inside functions</td>
<td>502</td>
</tr>
<tr>
<td>37.</td>
<td>Maximal functions and snapshots</td>
<td>505</td>
</tr>
<tr>
<td>38.</td>
<td>Dyadic cubes</td>
<td>505</td>
</tr>
<tr>
<td>39.</td>
<td>The Calderón-Zygmund approximation</td>
<td>507</td>
</tr>
<tr>
<td>40.</td>
<td>The John-Nirenberg theorem</td>
<td>508</td>
</tr>
<tr>
<td>41.</td>
<td>Reverse Hölder inequalities</td>
<td>511</td>
</tr>
<tr>
<td>42.</td>
<td>Two useful lemmas</td>
<td>513</td>
</tr>
<tr>
<td>43.</td>
<td>Better methods for small oscillations</td>
<td>515</td>
</tr>
<tr>
<td>44.</td>
<td>Real-variable methods and geometry</td>
<td>517</td>
</tr>
<tr>
<td>C</td>
<td>Paul Levy's Isoperimetric Inequality</td>
<td>519</td>
</tr>
<tr>
<td>D</td>
<td>Systolically Free Manifolds</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td>Glossary of Notation</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>577</td>
</tr>
</tbody>
</table>