LANDFILL BIOREACTOR DESIGN AND OPERATION

Debra R. Reinhart
Timothy G. Townsend

LEWIS PUBLISHERS
Boca Raton New York
CONTENTS

Chapter 1 — Introduction
- Scope and Objectives .. 1
- The Evolution of Landfills for Waste Management 2
- Landfills as Bioreactors ... 3
- Regulatory Status .. 4
- Organization of the Book .. 5

Chapter 2 — Modern Landfill Fundamentals
- Introduction .. 7
- Overview of Modern Sanitary Landfills 7
- Landfill Containment Systems 9
 - Compacted Soil Barrier Layers 10
 - Synthetic Barrier Layers .. 10
 - Liner Systems ... 11
 - Cap Systems .. 12
- Collection and Control of Leachate 13
- Leachate Generation ... 13
- Leachate Collection and Storage 14
- Leachate and Gas Management at MSW Landfills 15
 - The Landfill as a Biological System 16
 - Characteristics of Leachate 18
 - Leachate Treatment and Disposal 20
 - Characteristics and Generation of Landfill Gas 20
 - Landfill Gas Control ... 21
 - Waste Decomposition and Landfill Settlement 22
- Landfill Operation Strategies 23

Chapter 3 — Landfill Bioreactor Studies
- Laboratory Scale Studies .. 25
 - Georgia Institute of Technology Experiment I 25
 - University of Louisville Experiment 27
 - Federal Republic of Germany Experiment 28
 - Newcastle University Experiment 30
 - Georgia Institute of Technology Experiment II 31
- Pilot-Scale Bioreactor Studies 32
 - Sonoma County, California 32
 - Georgia Institute of Technology Study 33
 - Mountain View Landfill, California 36
 - Binghamton, New York ... 37
 - Breitenau Landfill, Australia 38
 - Broghborough, United Kingdom 43
 - SORAB Test Cells ... 45
- Full-Scale Landfill Bioreactor Studies 45
 - Lycoming County, Pennsylvania 45
 - Seamer Carr Landfill, United Kingdom 52
Chapter 4 — Full-Scale Experiences with Bioreactor Landfills — Case Studies

Introduction
Southwest Landfill, Alachua County, Florida
Central Facility Landfill, Worcester County, Maryland
Winfield Landfill, Columbia County, Florida
Pecan Row Landfill, Lowndes County, Georgia
Lower Mount Washington Valley Secure Landfill, Conway, New Hampshire
Coastal Regional Solid Waste Management Authority Landfill, Craven County, North Carolina
Lemons Landfill, Stoddard County, Missouri
Mill Seat Landfill, Monroe County, New York
Yolo County Landfill, California
Additional Full-Scale Efforts

Chapter 5 — The Hydrodynamics of Leachate Recirculating Landfills

Introduction
Leachate Generation
Leachate Quality
Predicting Leachate Quality
Internal Storage of Leachate
Moisture Movement
Unsaturated Leachate Flow
Unsaturated Flow Characteristics
Values of Saturated Hydraulic Conductivity in Landfills
Mathematical Modeling of Leachate Recirculation
Trench Modeling
Vertical Infiltration Well Modeling
Model Results
Leachate Recirculation Field Testing

Chapter 6 — The Impact of Leachate Recirculation of Leachate and Gas Characteristics

Introduction
Leachate Characteristics of Recirculating Landfills
Fate and Transport of Priority Pollutants
Comparison of Waste Stabilization Rates
Leachate Treatment Implications
Leachate Quantities
Gas Production

Chapter 7 — Landfill Bioreactor Design

Introduction
Liner/Leachate Collection System
Leachate Storage
Impact of Storage on Offsite Leachate Management
Storage Sizes
Leachate Reintroduction Systems
Prewetting of Waste
Leachate Spraying
Surface Ponds
Vertical Injection Wells
Horizontal Subsurface Introduction
Leachate Recirculation System Design
Horizontal Trenches
Vertical Recharge Wells
Design Approach
Final and Intermediate Caps
Gas Collection
Cell Construction
Construction Costs
Summary

Chapter 8 — Landfill Bioreactor Operation
Introduction
Waste Characterization
Waste Composition
Waste Physical Properties
Oxidation Reduction Conditions
Moisture Content
Recirculation Strategies
Leachate Recirculation Frequency
Extent of Leachate Recirculation
Effects of Waste Placement Rate
Use of Old Cells
Bioreactor Augmentation
Temperature Control
Nutrients
Buffering
Inoculation
Daily and Intermediate Covers
Settlement
Monitoring
When is the Waste Stable?

Chapter 9 — Materials Recovery and Reuse from Bioreactor Landfills
Introduction
Landfill Treatment and Reclamation Strategies
Benefits of Bioreactor Landfill Treatment and Reclamation
Conceptual Operation Approach
Mass Balance Design for Landfill Reclamation
Bioreactor Landfill Unit Sizing
The Amount and Composition of Reclaimed Material