Contents

Preface ix

Chapter 1. Geometry of Cubic Curves 1
§1.1. Addition of points on a cubic 1
§1.2. Lines and curves on the projective plane 8
§1.3. The tangents and inflection points 11
§1.4. Normal forms of the nonsingular cubic 16
§1.5. Singular cubics 20
§1.6. No nonsingular cubic admits a rational parameterization 22

Chapter 2. Elliptic Functions 25
§2.1. The topological structure of nonsingular cubics in CP^2 26
§2.2. The elliptic functions 29
§2.3. The Weierstrass function 32
§2.4. A differential equation for the Weierstrass function $\wp(z)$ 35
§2.5. A parameterization of the cubic with the help of the Weierstrass function 36
§2.6. The elliptic integrals 39
§2.7. Addition theorems for the elliptic integrals $F(\varphi)$ and $E(\varphi)$ 44
§2.8. The elliptic Jacobi functions 46
§2.9. The Weierstrass theorem on functions possessing an algebraic addition theorem 49

Chapter 3. Arcs of Curves and Elliptic Integrals 53
§3.1. Arcs of the ellipse and the hyperbola 53
§3.2. Division of arcs of the ellipse 55
§3.3. Curves with elliptic arcs 60
§3.4. Curves whose arc lengths can be expressed in terms of arc lengths of the circle 64

Chapter 4. Abel’s Theorem on Division of Lemniscate 67
§4.1. Construction of a regular 17-gon. An elementary approach 69
§4.2. Construction of regular polygons. Elements of Galois theory 71
§4.3. The equation for the division of the lemniscate 78
§4.4. Proof of Abel’s theorem on the division of the lemniscate 86
§4.5. Several remarks on Serret’s curves 91

Chapter 5. Arithmetic of Cubic Curves 103
§5.1. Diophantus’ method of secants. Second degree diophantine equations 104
§5.2. Addition of points on a cubic curve 111
§5.3. Several examples 115
§5.4. Mordell's theorem 119
§5.5. The rank and the torsion group of an elliptic curve 124

Chapter 6. Algebraic Equations 131
§6.1. Solving cubic and quartic equations 131
§6.2. Symmetric polynomials 133
§6.3. The Lagrange resolvents 134
§6.4. Roots of unity 137
§6.5. The Abel theorem on the unsolvability in radicals of the general quintic equation 140
§6.6. The Tschirnhaus transformations. Quintic equations in Bring's form 145

Chapter 7. Theta Functions and Solutions of Quintic Equations 149
§7.1. Definition of theta functions 149
§7.2. Zeros of theta functions 150
§7.3. The relation $\Theta_3^4 = \Theta_2^4 + \Theta_0^4$ 151
§7.4. Representation of theta functions by infinite products 152
§7.5. The relation $\Theta'_1(0) = \pi \Theta_0(0) \Theta_2(0) \Theta_3(0)$ 154
§7.6. Dedekind's η-function and the functions f, f_1, f_2 155
§7.7. Transformations of theta functions induced by transformations of τ 156
§7.8. The general scheme of solution of quintic equations 158
§7.9. Transformations of order 5 159
§7.10. The change of parameter $\tau \mapsto \tau + 2$ 160
§7.11. The change of parameter $\tau \mapsto -\frac{1}{2}$ 161
§7.12. The change of parameter $\tau \mapsto \frac{\tau - 1}{\tau + 1}$ 163
§7.13. Functions invariant with respect to the changes of parameter $\tau \mapsto \tau + 2, \tau \mapsto -\frac{1}{2}$ and $\tau \mapsto \frac{\tau - 1}{\tau + 1}$ 164
§7.14. Deduction of the modular equation 165
§7.15. Solving quintic equations 166
§7.16. The main modular function $j(\tau)$ 169
§7.17. The fundamental domain of $j(\tau)$ 170
§7.18. How to solve the equation $j(\tau) = c$ 173
§7.19. The functions invariant under the changes of parameter $\tau \mapsto \tau + 1$ and $\tau \mapsto -\frac{1}{2}$ 175
§7.20. The functions invariant with respect to the changes of parameter $\tau \mapsto \tau + 2$ and $\tau \mapsto -\frac{1}{2}$ 176

Bibliography 179

Index 183