The Riemann Legacy

Riemannian Ideas in Mathematics and Physics

by

Krzysztof Maurin

Division of Mathematical Methods in Physics,
University of Warsaw,
Warsaw, Poland

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON
Contents

Foreword: Riemann's Geometric Ideas and their Role in Mathematics and Physics

I Riemannian Ideas in Mathematics and Physics

1. **Gauss Inner Curvature of Surfaces**
 1.1 Parallel transport and linear (affine) connection
 1.2 Vector bundles and operations on them
 1.3 Riemann surfaces
 1.4 Riemannian connection. Levi-Civita connection
 1.5 Geodesics in Riemann space (manifold) \((M, g)\) as lines of extremal length. Euler-Lagrange equation
 1.6 Jacobi fields (curvature and geodesics)

2. **Sectional Curvature. Spaces of Constant Curvature. Weyl Hypothesis**
 2.1 Ovals
 2.2 Riemannian manifolds as metric spaces (Hopf-Rinow). Geodesic completeness
 2.3 Symmetric spaces
 2.4 Bounded regions in complex plane. Bergman metric (for the first time)
 2.5 Siegel half-space and Siegel disc
 2.6 Jacobi fields once again. Focal points

3. **Cohomology of Riemann spaces. Theorems of de Rham, Hodge, Kodaira**
 3.1 Homology. Cohomology. De Rham cohomology
 3.2 Hodge theory of harmonic forms
3.3 Hodge decomposition .. 55
3.4 The method of heat transport (diffusion equation) 57
3.5 The Euler-Poincaré characteristic (Euler number) 61
3.6 Index theorem (for the first time) 62
3.7 Sobolev spaces. Theorems of Rellich, Sobolev, and Gårding 64
3.8 Weitzenböck formulas .. 67
3.9 Euler form. Hopf theorem on index of vector field 69
3.10 Poincaré duality. Künneth theorem 70
3.11 Intersection number (Kronecker index) of two cycles 73
3.12 Index of vector a field and degree of mapping. Kronecker integral .. 77
3.13 Relation between Morse index and index of a vector field 82

4 Chern–Gauss–Bonnet theorem 84
 4.1 Allendörfer-Weil formula 87

5 Curvature and Topology or Characteristic Forms of Chern, Pontria-
 gin, and Euler .. 90
 5.1 Chern forms .. 90
 5.2 Pontriagin forms. Pfaffian R^∇. Chern theorem once again 97
 5.3 Hirzebruch signature theorem 99
 5.4 General index theorem (Atiyah-Singer) 100

 Siegel Space (once again!) 102
 6.1 Calabi hypothesis and Calabi-Yau spaces 105
 6.2 Bergman metrics on bounded domains 107
 6.3 Imbedding in projective spaces. Kodaira theorem 108
 6.4 Homogeneous complex spaces and bounded domains 111
 6.5 Symmetric spaces .. 114
 6.6 Spectral geometry ... 116

II General Structures of Mathematics 119

1 Differentiable Structures. Tangent Spaces. Vector Fields 121

2 Projective (Inverse) Limits of Topological Spaces 134

3 Inductive Limits. Presheaves. Covering Defined by Presheaf 137

5 Fields and their Extensions 163

6 Galois Theory. Solvable Groups 175

7 Ruler and Compass Constructions. Cyclotomic Fields. Kronecker–Weber Theorem 184

8 Algebraic and Transcendental Elements 189

9 Weyl principle 191

10 Topology of Compact Lie Groups 194

11 Representations of Compact Lie Groups 196

12 Nilpotent, Semimple, and Solvable Lie Algebras 210

13 Reflections, Roots, and Weights. Coxeter and Weyl groups 216
 13.1 Weights of representations of Lie algebra 220
 13.2 Classification of root systems. Coxeter diagrams 220
 13.3 Relation with semisimple complex Lie algebras 223

14 Covariant Differentiation. Parallel Transport. Connections 230

15 Remarks on Rich Mathematical Structures of Simple Notions of Physics Based on Example of Analytical Mechanics 237

16 Tangent Bundle TM. Vector, Fiber, Tensor and Tensor Densities, and Associate Bundles 242

17 G-spaces. Group Representations 253

18 Principal and Associated Bundles 258

19 Induced Representations and Associated Bundles 265

20 Vector Bundles and Locally Free Sheaves 268

21 Axiom of Covering Homotopy 271
23 Homology. Cohomology. de Rham Cohomology 281
24 Cohomology of Sheaves. Abstract de Rham Theorem 286
25 Homotopy Group $\pi_k(X, x_0)$. Hopf Fibering. Serre Theorem on Exact Sequence of Homotopy Groups of a Fibering 292
26 Various Benefits of Characteristic Classes (Orientability, Spin Structures). Clifford Groups, Spin Group 297
27 Divisors and Line Bundles. Algebraic and Abelian Varieties 303
28 General Abelian Varieties and Theta Function 310
28.1 Theta functions .. 313
28.2 Strictly transcendental extensions. Transcendental degree 316
29 Theorems on Algebraic Dependence 318

III The Idea of the Riemann Surface 325
29.1 Introduction ... 327
29.2 Fredholm-Noether operators. Parametrices 329
29.3 Proof of Riemann–Roch theorem 333
29.4 The fundamental theorem for compact surfaces 341
29.5 Embedding of Riemann surfaces 343
29.6 Hyperelliptic surfaces. Hyperelliptic involutions 345
29.7 Weierstrass points. Wronskian 347
29.8 Hyperelliptic involution 349
29.9 Clifford theorem ... 351
29.10 Riemann bilinear relations. Abel–Jacobi map 351
29.11 Linear bundles on complex tori: Appel–Humbert theorem ... 355
29.12 θ-functions. The great Riemann theorems: ‘Abel theorem’, ‘Jacobi inversion’, and ‘θ divisor theorem’ 357

IV Riemann and Calculus of Variations 361
1 Introduction 363
1.1 General criteria for existence of minimizers of functionals 366
1.2 Convexity and weak lower semi continuity 368

2 The Plateau Problem 370
2.1 Coercity of Dirichlet integral 370
2.2 The Rado–Douglas solution of Plateau problem 371
2.3 Riemann mapping theorem and Plateau problem 378
2.4 Representation formulas for minimal surfaces. Enneper–Weierstrass theorem. Scherk surface 380
2.5 Minimal surfaces and value distribution theory 384
2.6 Some properties of harmonic maps. Theorems of Eells–Sampson, Hartman, and corollaries 388

3 Teichmüller Theory. Riemann Moduli Problem 396
3.1 Teichmüller metric 398
3.2 The analytic structure of the Teichmüller space \(T_p \) 398
3.3 The moduli space 399

4 Riemannian Approach to Teichmüller Theory. Harmonic Maps and Teichmüller Space 401
4.1 Hermitian hyperbolic geometry of Kobayashi 414
4.2 Hyperbolic complex analysis 418
4.3 Hyperbolicity of the Teichmüller space 418
4.4 Kobayashi pseudodistance. Kobayashi hyperbolic spaces 419
4.5 Invariant metrics of Teichmüller space 421
4.6 Harmonic Beltrami differentials on \((M, g)\) 422
4.7 Wolpert formulas for Petersson–Weil form 427
4.8 Generalization to higher dimensions 430
4.9 Metrics on Teichmüller space (general remarks) 432
4.10 The period map. Royden theorems 434
4.11 The period map and Torelli theorems 436

5 Teichmüller theory and Plateau–Douglas problem 438

6.1 Subharmonic functions. Riesz decomposition 446
6.2 Poisson integral and Harnack theorems 447
6.3 History of the potential theory 449
6.4 Perron method 451
6.5 Rado theorem. Theorem of Poincaré–Volterra 453

7 The Royal Road to Calculus of Variations (Constantin Carathéodory) 457

7.1 Introduction 457
7.2 Fields 459
7.3 An equivalent problem 461
7.4 Integrability conditions. Geodesic fields. (Independent) Hilbert integral 462
7.5 Weierstrass excess function and condition for strong minimum 463
7.6 Legendre condition for weak minimum 463
7.7 Complete figure of variational problem 464
7.8 Problems with free endpoints. Broken extremals 466
7.10 Physical meaning of functions H, S, and L 470
7.11 Lagrange bracket and geodesic fields 472
7.12 Canonical transformations 473
7.13 Caustics. 'Enveloppensatz' of Carathéodory. Singularities 476
7.14 Finsler geometry and geometric optics 477
7.15 General Huygens principle and Finsler geometry 479
7.16 Field theories for calculus of variation for multiple integrals 482
7.17 Lepage theory of geodesic fields 485
7.18 Carathéodory and thermodynamics (second law). Pfaff problem and Frobenius theorem 490
7.19 Carathéodory and the beginning of calculus of variations 492

8 Symplectic and Contact Geometries. Conservation Laws 497

8.1 Introduction 497
8.2 Lie approach to hamiltonian mechanics 503
8.3 Conservation laws and 'Postulates of impotence' 505
8.4 Momentum map and symplectic reduction. (Reduction of phase space for systems with symmetries) 506
8.5 Hyperkähler quotients 511

V Riemann and Complex Geometry

1 Introduction 525

2 On Complex Analysis in Several Variables 528

3 Ellipticity, Runge Property, and Runge Type Theorems 543

4 Hörmander Method in Complex Analysis 552

5 Wirtinger Theorems, Metric Theory of Analytic Sets 560

6 The Problem of Poincaré and the Cousin Problems 567

7 Ringed Spaces and General Complex Spaces 578

8 Construction of Complex Spaces by Gluing and by Taking Quotient 596
 8.1 Construction of complex spaces by gluing 598
 8.2 On deformations of regular families of complex structures
 (Grauert theory) 599
 8.3 Grauert solution of main problems of deformation theory of
 complex structures 605
 8.4 On differential calculus on complex spaces 606
 8.5 From Riemann period relations to theorems of Kodaira and
 Grauert 609
 8.6 Concluding remarks 613

9 Differential Geometry of Holomorphic Vector Bundles over Compact
 Riemann Surfaces and Kähler manifolds. Stable Vector Bundles,
 Hermite-Einstein Connections, and their Moduli Spaces 615
 9.1 Flat bundles and flat connections 619
 9.2 Moduli spaces of H-E structures 624
 9.3 Hermite-Einstein metrics (structures) as critical points of
 Donaldson functional (variational theory of H-E connections) 627
 9.4 Kähler structures on moduli space $\mathcal{M}^{H-E}(E)$ 635

VI Riemann and Number Theory

1 Introduction 651
 1.1 Introduction 651