Bipartite Graphs and their Applications
Contents

Preface vii
Notation xi

Chapter 1 Basic concepts 1
 1.1 Graphs 1
 1.2 Partially ordered sets 4
 1.3 Reducibility of problems and NP-completeness 4

Chapter 2 Introduction to bipartite graphs 7
 2.1 Recognising bipartite graphs 7
 2.2 Bipartite graphs of certain types 10
 2.3 Matrix characterisations of bipartite graphs 15
 Application 20

Chapter 3 Metric properties 23
 3.1 Radius and diameter 23
 3.2 Metric properties of trees 28
 3.3 Metric properties of the n-cube 32
 Application 39

Chapter 4 Connectivity 45
 4.1 k-connected graphs 45
 4.2 k-edge-connected graphs 48
 Application 52

Chapter 5 Maximum matchings 56
 5.1 Properties of maximum matchings 56
 5.2 Finding a maximum matching 59
 5.3 Maximum matchings in convex bipartite graphs 65
 5.4 Stable matchings 67
 Application 71

Chapter 6 Expanding properties 75
 6.1 Graphs with Hall’s condition 75
 6.2 Expanding graphs 82
 6.3 Expanders 85
 Application 90

6.4 Expanders and sorters
Chapter 7
Subgraphs with restricted degrees

7.1 (g,f)-factors

7.2 Subgraphs with given degrees

7.3 2-factors and Hamilton cycles

7.4 T-joins

Application

7.5 Isomer problems in chemistry

Chapter 8
Edge colourings

8.1 Edge colourings and timetables

8.2 Interval edge colourings

8.3 List colourings

8.4 Colour-feasible sequences

8.5 Transformations of proper colourings

8.6 Uniquely colourable bipartite graphs

Application

8.7 Rearrangeable telephone networks

Chapter 9
Doubly stochastic matrices and bipartite graphs

9.1 Convex representations of doubly stochastic matrices

9.2 Matrices with a unique convex representation

9.3 Permanents and perfect matchings

Chapter 10
Coverings

10.1 Some examples of covering problems

10.2 Vertex coverings and independent sets

10.3 Dulmage and Mendelsohn's canonical decomposition

Application

10.4 Decomposition of partially ordered sets into chains

Chapter 11
Some combinatorial applications

11.1 Systems of distinct representatives

11.2 Generation of subsets of a set

11.3 Pebbling in hypergrids

11.4 Completing latin squares

Chapter 12
Bipartite subgraphs of arbitrary graphs

12.1 Spanning bipartite subgraphs

12.2 Covering the edges of a graph with bipartite subgraphs

Applications

12.3 Optimal spanning trees and the Travelling Salesman Problem

12.4 The optimal spanning tree and optimal path problems

Appendix

References

Index