QUANTITATIVE SEISMOLOGY
SECOND EDITION

Keiiti Aki
Observatoire Volcanologique du Piton de la Fournaise

Paul G. Richards
Lamont-Doherty Earth Observatory of Columbia University

University Science Books
Sausalito, California
3.1 On the use of effective slip and effective elastic moduli in the source region 41

3.2 A Simple Example of Slip on a Buried Fault 42

3.3 General Analysis of Displacement Discontinuities across an Internal Surface Σ 49

3.4 Volume Sources: Outline of the Theory and Some Simple Examples 53

3.5 Body-force equivalents and the seismic moment tensor 54

3.6 The strain energy released by earthquake faulting 55

Suggestions for Further Reading 58

Problems 59

4. ELASTIC WAVES FROM A POINT DISLOCATION SOURCE 63

4.1 Formulation: Introduction of Potentials 63

4.1.1 Lamé’s theorem 67

4.2 Solution for the Elastodynamic Green Function in a Homogeneous, Isotropic, Unbounded Medium 68

4.2.1 Properties of the far-field P-wave 73

4.2.2 Properties of the far-field S-wave 73

4.2.3 Properties of the near-field term 74

4.3 The Double-Couple Solution in an Infinite Homogeneous Medium 76

4.4 Ray Theory for Far-Field P-waves and S-waves from a Point Source 82

4.4.1 Properties of the travel-time function T(x) associated with velocity field c(x) 87

4.4.2 Ray coordinates 90

4.4.3 The geometrical solution for P-waves in spherically symmetric media 92

4.4.4 The geometrical solution for S-waves in spherically symmetric media: Introduction of the components 95

4.4.5 The geometrical ray solutions in general inhomogeneous media 96

4.5 The Radiation Pattern of Body Waves in the Far Field for a Point Shear Dislocation of Arbitrary Orientation in a Spherically Symmetric Medium 101

4.5.1 A method for obtaining the fault-plane orientation of an earthquake and the direction of slip using teleseismic body-wave observations 102

4.5.2 Arbitrary orientation of the double couple in a homogeneous medium 106

4.5.3 Adapting the radiation pattern to the case of a spherically symmetric medium 110

4.5.4 Cartesian components of the moment tensor for a shear dislocation of arbitrary orientation 112

Suggestions for Further Reading 113

Problems 114
5. PLANE WAVES IN HOMOGENEOUS MEDIA AND THEIR REFLECTION AND TRANSMISSION AT A PLANE BOUNDARY 119

5.1 Basic Properties of Plane Waves in Elastic Media 120
 BOX 5.1 Notation 121
 5.1.1 Potentials for plane waves 123
 5.1.2 Separation of variables; steady-state plane waves 124
 BOX 5.2 The sign convention for Fourier transforms used in solving wave-propagation problems 125

5.2 Elementary Formulas for Reflection/Conversion/Transmission Coefficients 128
 5.2.1 Boundary conditions 128
 BOX 5.3 The distinction between kinematics and dynamics 129
 5.2.2 Reflection of plane P-waves and SV-waves at a free surface 130
 BOX 5.4 Impedance 132
 5.2.3 Reflection and transmission of SH-waves 136
 5.2.4 Reflection and transmission of P–SV across a solid–solid interface 139
 5.2.5 Energy flux 145
 5.2.6 A useful approximation for reflection/transmission coefficients between two similar half-spaces 147
 5.2.7 Frequency independence of plane-wave reflection/transmission coefficients 149

5.3 Inhomogeneous Waves, Phase Shifts, and Interface Waves 149
 BOX 5.5 Phase shifts: phase delay and phase advance 151
 BOX 5.6 The Hilbert transform and the frequency-independent phase advance 152

5.4 A Matrix Method for Analyzing Plane Waves in Homogeneous Media 157

5.5 Wave Propagation in an Attenuating Medium: Basic Theory for Plane Waves 161
 BOX 5.7 Different definitions of Q 162
 5.5.1 The necessity for material dispersion in an attenuating medium 163
 5.5.2 Some suggested values for material dispersion in an attenuating medium 165
 BOX 5.8 Relations between the amplitude spectrum and phase spectrum of a causal propagating pulse shape 167

5.6 Wave Propagation in an Elastic Anisotropic Medium: Basic Theory for Plane Waves 177
 BOX 5.9 Shear-wave splitting due to anisotropy 181

Suggestions for Further Reading 183
Problems 183

6. REFLECTION AND REFRACTION OF SPHERICAL WAVES; LAMB’S PROBLEM 189

6.1 Spherical Waves as a Superposition of Plane Waves and Conical Waves 190
 BOX 6.1 Fundamental significance of Weyl and Sommerfeld integrals 193

6.2 Reflection of Spherical Waves at a Plane Boundary: Acoustic Waves 195
 BOX 6.2 Determining the branch cuts of $\sqrt{\alpha^2 - p^2} = \xi$ in the complex p-plane, so that $\text{Im} \xi \geq 0$ for a whole plane. 197
8. FREE OSCILLATIONS OF THE EARTH 331

8.1 Free Oscillations of a Homogeneous Liquid Sphere 332
 BOX 8.1 Spherical surface harmonics 334

8.2 Excitation of Free Oscillations by a Point Source 342
 BOX 8.2 Identification of free-oscillation peaks when the earthquake source mechanism is known 349

8.3 Surface Waves on the Spherical Earth 351
 BOX 8.3 An example of the Poisson sum formula 352
 BOX 8.4 Different Legendre functions and their asymptotic approximations 354

8.4 Free Oscillations of a Self-Gravitating Earth 357

8.5 The Centroid Moment Tensor 366
 BOX 8.5 Consideration of initial stress 367

8.6 Splitting of Normal Modes Due to the Earth's Rotation 370

8.7 Spectral Splitting of Free Oscillations Due to Lateral Inhomogeneity of the Earth's Structure 374
 BOX 8.6 Quasi-degeneracy 377

Suggestions for Further Reading 381
Problems 381

9. BODY WAVES IN MEDIA WITH DEPTH-DEPENDENT PROPERTIES 385

9.1 Cagniard's Method for a Medium with Many Plane Layers: Analysis of a Generalized Ray 388

9.2 The Reflectivity Method for a Medium with Many Plane Layers 393
 BOX 9.1 Propagator matrices for SH and for P–SV problems 397
 BOX 9.2 Earth-flattening transformation and approximations 403

9.3 Classical Ray Theory in Seismology 407

9.4 Inversion of Travel-Time Data to Infer Earth Structure 413
 9.4.1 The Herglotz–Wiechert formula 414
 BOX 9.3 Abel's problem 417
 9.4.2 Travel-time inversion for structures including low-velocity layers 423
 BOX 9.4 Measurement of $\tau(p)$ 426

9.5 Wave Propagation in Media Having Smoothly Varying Depth-Dependent Velocity Profiles within Which Turning Points Are Present 429
 BOX 9.5 Scalar potentials for P-, SV-, and SH-waves in spherically symmetric media 431
 BOX 9.6 WKBJ theory 434
 BOX 9.7 A sample application of the Watson transform 439
 BOX 9.8 Useful transform pairs 445

9.6 Body-Wave Problems for Spherically Symmetric Earth Models in Which Discontinuities are Present between Inhomogeneous Layers 447
12. PRINCIPLES OF SEISMOMETRY 595

12.1 Basic Instrumentation 598
 12.1.1 Basic inertial seismometer 598
 12.1.2 Stable long-period vertical suspension 602
 12.1.3 Measurement of horizontal acceleration 604
 12.1.4 Measurement of strain and rotation 607

12.2 Frequency and Dynamic Range of Seismic Signals and Noise 609
 12.2.1 Surface waves with periods around 20 seconds 611
 BOX 12.1 Terminology associated with large ranges in value 612
 BOX 12.2 Recording media 613
 12.2.2 P-waves for $5^\circ < \Delta < 110^\circ$ 614
 12.2.3 Range of amplitude spectral densities for surface waves and
 P-waves 614
 12.2.4 Microearthquake waves at short distance 615
 12.2.5 Ambient seismic noise 616
 12.2.6 Amplitude of free oscillations 617
 12.2.7 Amplitudes of solid Earth tide, Chandler wobble, plate motion, and
 moonquakes 618
 12.2.8 Seismic motion in the epicentral area 618
 12.2.9 Strain amplitudes of gravitational waves 620
 BOX 12.3 Engineering response spectra 621

12.3 Detection of Signal 623
 12.3.1 Brownian motion of a seismometer pendulum 623
 12.3.2 Electromagnetic velocity sensor 625
 12.3.3 The response characteristics of traditional observatory
 seismographs 629
 12.3.4 High sensitivity at long periods 632
 BOX 12.4 General features of the response of a traditional electromagnetic
 seismograph 634
 12.3.5 The nonlinearity of the seismic sensor 636
 BOX 12.5 Poles and zeros 637
 12.3.6 Feedback seismometers 639

Suggestions for Further Reading 642
Problems 643

Appendix 1: Glossary of Waves 647
Appendix 2: Definition of Magnitudes 655
Bibliography 657
Index 687