Markov Chain Monte Carlo
Stochastic simulation for
Bayesian inference

Dani Gamerman
Professor of Statistics
Federal University of Rio de Janeiro
Brazil
Contents

Preface xi

Introduction 1

1 **Stochastic simulation** 9
 1.1 Introduction 9
 1.2 Generation of discrete random quantities 10
 1.3 Generation of continuous random quantities 13
 1.4 Generation of random vectors and matrices 20
 1.5 Resampling methods 23
 1.6 Exercises 31

2 **Bayesian inference** 37
 2.1 Introduction 37
 2.2 Bayes' theorem 37
 2.3 Conjugate distributions 44
 2.4 Hierarchical models 54
 2.5 Dynamic models 58
 2.6 Exercises 63

3 **Approximate methods of inference** 67
 3.1 Introduction 67
 3.2 Asymptotic approximations 68
 3.3 Approximations by Gaussian quadrature 78
 3.4 Monte Carlo integration 81
 3.5 Methods based on stochastic simulation 83
 3.6 Exercises 88

4 **Markov chains** 93
 4.1 Introduction 93
 4.2 Definition and transition probabilities 94
 4.3 Decomposition of the state space 98
 4.4 Stationary distributions 101
 4.5 Limiting theorems 104
4.6 Reversible chains 106
4.7 Continuous state spaces 109
4.8 Simulation of a Markov chain 112
4.9 Data augmentation or substitution sampling 115
4.10 Exercises 116

5 Gibbs sampling 119
5.1 Introduction 119
5.2 Definition and properties 120
5.3 Implementation and optimization 124
5.4 Convergence diagnostics 133
5.5 Applications 145
5.6 Software: BUGS, CODA, gibbsit and itsim 150
5.7 Exercises 155

6 Metropolis-Hastings algorithms 161
6.1 Introduction 161
6.2 Definition and properties 162
6.3 Special cases 166
6.4 Hybrid algorithms 169
6.5 Applications 178
6.6 Exercises 189

7 Further topics in MCMC 193
7.1 Introduction 193
7.2 Model adequacy 193
7.3 Model choice 201
7.4 Convergence acceleration 210
7.5 Exercises 217

References 221

Author index 235

Subject index 239