Valentine S. Kulikov
Moscow State University of Printing

Mixed Hodge Structures and Singularities
Contents

Introduction xi

I The Gauss–Manin connection 1
1 Milnor fibration, Picard–Lefschetz monodromy transformation, topological Gauss–Manin connection 1
1.1 Milnor fibration 1
1.2 Cohomological Milnor fibration 1
1.3 Topological Gauss–Manin connection 2
1.4 Picard–Lefschetz monodromy transformation 2

2 Connections, locally constant sheaves and systems of linear differential equations 3
2.1 Connection as a covariant differentiation 3
2.2 Equivalent definition: a covariant derivative along a vector field 4
2.3 Local calculation of connections. Relation to differential equations 5
2.4 The integrable connections. The De Rham complex 6
2.5 Local systems and integrable connections 7
2.6 Dual local systems and connections 8

3 De Rham cohomology 10
3.1 The Poincaré lemma 10
3.2 Relative De Rham cohomology 11
3.3 De Rham cohomology for smooth Stein morphisms 11
3.4 Coherence theorem 12
3.5 On the absence of torsion in the De Rham cohomology sheaves 12
3.6 Relation between $\mathcal{H}^p(f_*\Omega_f)$ and $f_*\mathcal{H}^p(\Omega_f)$ 13

4 Gauss–Manin connection on relative De Rham cohomology 14
Contents

4.1 Identification of sheaves of sections of cohomological fibration and of relative De Rham cohomology 15
4.2 Calculation of the connection on a relative De Rham cohomology sheaf 16
4.3 The division lemma. The connections on the sheaves \(\mathcal{H}^p_{DR}(X/S) \) for \(p \leq n - 1 \) 17
4.4 The sheaf \(\mathcal{H} = f_*\Omega^n_{X/S}/d(f_*\Omega^{n-1}_{X/S}) \) 19
4.5 Meromorphic connections 20
4.6 The Gauss–Manin connection as a connecting homomorphism 21

5 Brieskorn lattices 23
5.1 Brieskorn lattice "H" 24
5.2 Calculation of the Gauss–Manin connection \(\nabla \) on \(\mathcal{H} \) 25
5.3 Increasing filtration on \(\mathcal{H}^{(0)} \) 25
5.4 A practical method of calculation of the Gauss–Manin connection 27
5.5 Calculation of the Gauss–Manin connection of quasi-homogeneous isolated singularities 28

6 Absence of torsion in sheaves \(\mathcal{H}^{(-i)} \) of isolated singularities 30
6.1 The presence of a connection implies the absence of torsion 30
6.2 A theorem of Malgrange 31
6.3 Connection on a pair \((E, F) \) 32
6.4 Sheaves \(\mathcal{H}^{(-p)} \) are locally free 32

7 Singular points of systems of linear differential equations 33
7.1 Differential equations of Fuchsian type 33
7.2 Systems of linear differential equations and connections 34
7.3 Decomposition of a fundamental matrix \(Y(t) \) 35
7.4 Regular singular points 36
7.5 Simple singular points 36
7.6 Simple singular points are regular 37
7.7 Connections with regular singularities 39
7.8 Residue and limit monodromy 41

8 Regularity of the Gauss–Manin connection 42
8.1 The period matrix and the Picard–Fuchs equation 42
8.2 The regularity theorem follows from Malgrange's theorem 44
8.3 The regularity theorem and connections with logarithmic poles 44

9 The monodromy theorem 46
9.1 Two parts of the monodromy theorem 46
9.2 Eigenvalues of monodromy 47
9.3 The size of Jordan blocks 49
9.4 Consequences of the monodromy theorem. Decomposition of integrals into series 49
10 Gauss–Manin connection of a non-isolated hypersurface singularity 51
10.1 De Rham cohomology sheaves 51
10.2 Coherence 52
10.3 Relation between $\mathcal{H}^p(f_\ast \Omega^* f)$ and $f_\ast \mathcal{H}^p(\Omega^*_f)$ 53
10.4 A general method of extension of a singular connection over the whole disk 53
10.5 The sheaves \mathcal{H}^p and the Gauss–Manin connection $\partial_1: \mathcal{H}^p_{(-2)} \rightarrow \mathcal{H}^p_{(-1)}$ 54
10.6 The sheaves $\mathcal{H}^p_{(0)}$ and the Gauss–Manin connection $\partial_1: \mathcal{H}^p_{(-1)} \rightarrow \mathcal{H}^p_{(0)}$ 56
10.7 A generalization of diagram (5.3.4) 57

II Limit mixed Hodge structure on the vanishing cohomology of an isolated hypersurface singularity 60
1 Mixed Hodge structures. Definitions. Deligne’s theorem 60
1.1 Pure Hodge structure 60
1.2 Polarised HSs 61
1.3 Mixed Hodge structure 61
1.4 Deligne’s theorem 62
2 The limit MHS according to Schmid 62
2.1 Variation of HS: geometric case 62
2.2 Variation of HS: definition 63
2.3 Classifying spaces and period mappings 63
2.4 The canonical Milnor fibre 64
2.5 The Schmid limit Hodge filtration F_S 67
2.6 An interpretation of F_S in terms of the canonical extension of \mathcal{H} 69
2.7 The weight filtration of a nilpotent operator 70
2.8 Schmid’s theorem 73
3 The limit MHS according to Steenbrink 73
3.1 The limit MHS for projective families: the case of unipotent monodromy 74
3.2 The limit MHS for projective families: the general case 75
3.3 Brieskorn construction 77
3.4 Limit MHS on a vanishing cohomology 78
3.5 The weight filtration on $H^n(X_\infty)$. Symmetry of Hodge numbers 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Hodge theory of a smooth hypersurface according to Griffiths–Deligne</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>The Gysin exact sequence</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Hodge theory for a complement $U = X \setminus Y$. Hodge filtration and pole order filtration</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>De Rham complex of the sheaf $B_{[Y]}X$ and the cohomology of a hypersurface Y</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>The case of a smooth hypersurface Y in a projective space $X = \mathbb{P}^{n+1}$</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Generalization to the case of a hypersurface with singularities</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>The Gauss–Manin system of an isolated singularity</td>
<td>88</td>
</tr>
<tr>
<td>5.1</td>
<td>Hodge theory of a smooth hypersurface in the relative case</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>The Gauss–Manin differential system</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Interpretation of the complex $DR^\ast_{\mathcal{Z}/S} (B_{[T]}Z)$ in terms of the morphism $f: X \to S$</td>
<td>91</td>
</tr>
<tr>
<td>5.4</td>
<td>Connection between the differential system \mathcal{H}_X and the Brieskorn lattice $\mathcal{H}^{(0)}$</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>Decomposition of a meromorphic connection into a direct sum of the root subspaces of the operator $t \partial_t$. The V'-filtration and the canonical lattice</td>
<td>95</td>
</tr>
<tr>
<td>6.1</td>
<td>'Block' decomposition</td>
<td>95</td>
</tr>
<tr>
<td>6.2</td>
<td>Decomposition of a meromorphic connection \mathcal{M} into a direct sum of the root subspaces</td>
<td>96</td>
</tr>
<tr>
<td>6.3</td>
<td>The order function α and the V'-filtration</td>
<td>98</td>
</tr>
<tr>
<td>6.4</td>
<td>Identification of the zero fibre of the canonical extension \mathcal{L} and the canonical fibre of the fibration H</td>
<td>99</td>
</tr>
<tr>
<td>6.5</td>
<td>The decomposition of sections $\omega \in \mathcal{M}$ into a sum of elementary sections</td>
<td>100</td>
</tr>
<tr>
<td>6.6</td>
<td>Transfer of automorphisms from the Milnor lattice H to the meromorphic connection \mathcal{M}</td>
<td>101</td>
</tr>
<tr>
<td>7</td>
<td>The limit Hodge filtration according to Varchenko and to Scherk–Steenbrink</td>
<td>103</td>
</tr>
<tr>
<td>7.1</td>
<td>Motivation of Scherk–Steenbrink's construction of the Hodge filtration</td>
<td>103</td>
</tr>
<tr>
<td>7.2</td>
<td>The definition of the limit Hodge filtration F_{SS} according to Scherk–Steenbrink</td>
<td>106</td>
</tr>
<tr>
<td>7.3</td>
<td>The Scherk–Steenbrink theorem</td>
<td>108</td>
</tr>
<tr>
<td>7.4</td>
<td>Varchenko's theorem about the operator of multiplication by f in Ω_f</td>
<td>110</td>
</tr>
<tr>
<td>7.5</td>
<td>The definition of the limit Hodge filtration F^\ast on $H^n(X_\infty)$ according to Varchenko</td>
<td>111</td>
</tr>
</tbody>
</table>
Contents

7.6 Comparison of the filtrations F_{ss} and F_{va} 111
7.7 Supplement on the connection between the Gauss–
Manin differential system \mathcal{K}_X and its meromorphic
connection \mathcal{K} 112

8 Spectrum of a hypersurface singularity 115
8.1 The definition of the spectrum of an isolated singularity 115
8.2 The spectral pairs $\text{Spec}(f)$ 117
8.3 Properties of the spectrum 118
8.4 The spectra of a quasihomogeneous and a semi-
quasihomogeneous singularity 119
8.5 Calculation of the spectrum of an isolated singularity
in terms of a Newton diagram 122
8.6 Calculation of the geometric genus of a hypersurface
singularity in terms of the spectrum 127
8.7 Spectrum of the join of isolated singularities 127
8.8 Spectra of simple, uni- and bimodal singularities 129
8.9 Semicontinuity of the spectrum. Stability of spectrum
for μ-const deformations 130
8.10 Spectrum of a non-isolated singularity 132
8.11 Relation between the spectrum of a singularity with a
one-dimensional critical set and spectra of isolated
singularities of its Iomdin series 134

III The period map of a μ-const deformation of an isolated
hypersurface singularity associated with Brieskorn
lattices and MHSs 139

1 Gluing of Milnor fibrations and meromorphic connections
of a μ-const deformation of a singularity 139
1.1 Milnor fibrations 140
1.2 Cohomological fibration 141
1.3 Canonical extension of the sheaf \mathcal{K} and the
meromorphic connection 142

2 Differentiation of geometric sections and their root
components wrt a parameter 144
2.1 Geometric sections and their root components 144
2.2 Formulae for derivatives of geometric sections and
their root components wrt a parameter 146
2.3 Decomposition of the root components of geometric
sections into Taylor series for upper diagonal deforma-
tions of quasihomogeneous singularities 148
2.4 The sheaves $Gr^p_y,\mathcal{K}(0)$ 150
Contents

3 The period map
 3.1 Identification of meromorphic connections in a μ-const family of singularities 151
 3.2 The period map defined by the embedding of Brieskorn lattices 152
 3.3 Example: the period map for E_{12} singularities 154
 3.4 The period map for hyperbolic singularities $T_{p,q,r}$ 156
 3.5 The period map for simply-elliptic singularities 159
 3.6 The period map defined by MHS on the vanishing cohomology 163

4 The infinitesimal Torelli theorem 165
 4.1 The V'-filtration on Jacobian algebra. The necessary condition for μ-const deformation 165
 4.2 Calculation of the tangent map of the period map. The horizontality of the MHS-period map 167
 4.3 The infinitesimal Torelli theorem 169
 4.4 The period map in the case of quasihomogeneous singularities 171

5 The Picard–Fuchs singularity and Hertling’s invariants 172
 5.1 The Picard–Fuchs singularity $PFS(f)$ according to Varchenko 172
 5.2 The Hertling invariant $Her_1(f)$ 174
 5.3 The Hertling invariants $Her_2(f)$ and $Her_3(f)$ 177
 5.4 Hertling’s results 179

References 181
Index 185