TABLE OF CONTENTS

Editors' Preface xiii
Biography of Guy Brousseau xv
Prelude to the Introduction 1
Introduction. Setting the scene with an example: The race to 20 3
 1. Introduction of the race to 20 3
 1.1. The game 3
 1.2. Description of the phases of the game 3
 1.3. Remarks 5
 2. First phase of the lesson: Instruction 6
 3. Action—situation, pattern, dialectic 8
 3.1. First part of the game (one against the other) 8
 3.2. Dialectic of action 9
 4. Formulation—situation, pattern, dialectic 10
 4.1. Second part of the game (group against group) 10
 4.2. Dialectic of formulation 12
 5. Validation—situation, pattern, dialectic 13
 5.1. Third part of the game (establishment of theorems) 13
 5.2. The attitude of proof, proof and mathematical proof 15
 5.3. Didactical situation of validation 15
 5.4. Dialectic of validation 17

Chapter 1 prelude 19

Chapter 1. Foundations and methods of didactique 21
 1. Objects of study of didactique 21
 1.1. Mathematical knowledge and didactical transposition 21
 1.2. The work of the mathematician 21
 1.3. The student's work 22
 1.4. The teacher's work 23
 1.5. A few preliminary naive and fundamental questions 23
 2. Phenomena of didactique 25
 2.1. The Topaze effect and the control of uncertainty 25
 2.2. The Jourdain effect or fundamental misunderstanding 25
vi TABLE OF CONTENTS

2.3. Metacognitive shift 26
2.4. The improper use of analogy 27
2.5. The aging of teaching situations 27

3. Elements for a modelling 29
 3.1. Didactical and adidactical situations 29
 3.2. The didactical contract 31
 3.3. An example of the devolution of an adidactical situation 33
 3.4. The epistemology of teachers 35
 3.5. Illustration: the Diéns effect 35
 3.6. Heuristics and didactique 37

4. Coherence and incoherence of the modelling envisaged: The paradoxes of the didactical contract 40
 4.1. The paradox of the devolution of situations 41
 4.2. Paradoxes of the adaptation of situations 42
 4.2.1. Maladjustment to correctness 42
 4.2.2. Maladjustment to a later adaptation 43
 4.3. Paradoxes of learning by adaptation 44
 4.3.1. Negation of knowledge 44
 4.3.2. Destruction of its cause 45
 4.4. The paradox of the actor 45

5. Ways and means of modelling didactical situations 47
 5.1. Fundamental situation corresponding to an item of knowledge 47
 5.1.1. With respect to the target knowledge 47
 5.1.2. With respect to teaching activity 48
 5.2. The notion of “game” 48
 5.3. Game and reality 51
 5.3.1. Similarity 51
 5.3.2. Dissimilarity 52
 5.4. Systemic approach of teaching situations 53

6. Adidactical situations 54
 6.1. Fundamental sub-systems 54
 6.1.1. Classical patterns 54
 6.1.2. First decomposition proposed 56
 6.1.3. Necessity of the “adidactical milieu” sub-system 57
 6.1.4. Status of mathematical concepts 58
 6.2. Necessity of distinguishing various types of adidactical situations 60
 6.2.1. Interactions 61
 6.2.2. The forms of knowledge 62
 6.2.3. The evolution of these forms of knowledge: learning 63
 6.2.4. The sub-systems of the milieu 65
TABLE OF CONTENTS

6.3. First study of three types of adidactical situations 65
 6.3.1. Action pattern 65
 6.3.2. Communication pattern 67
 6.3.3. Explicit validation pattern 69

Chapter 2 prelude 77

Chapter 2. Epistemological obstacles, problems and didactical engineering 79

1. Epistemological obstacles and problems in mathematics 79
 1.1. The notion of problem 79
 1.1.1. Classical conception of the notion of problem 79
 1.1.2. Critique of these conceptions 81
 1.1.3. Importance of the notion of obstacle in teaching by means of problems 82
 1.2. The notion of obstacle 83
 1.2.1. Epistemological obstacles 83
 1.2.2. Manifestation of obstacles in didactique of mathematics 84
 1.2.3. Origin of various didactical obstacles 86
 1.2.4. Consequences for the organization of problem-situations 87
 1.3. Problems in the construction of the concept of decimals 90
 1.3.1. History of decimals 90
 1.3.2. History of the teaching of decimals 90
 1.3.3. Obstacles to didactique of a construction of decimals 91
 1.3.4. Epistemological obstacles—didactical plan 92
 1.4. Comments after a debate 93

2. Epistemological obstacles and didactique of mathematics 98
 2.1. Why is didactique of mathematics interested in epistemological obstacles? 98
 2.2. Do epistemological obstacles exist in mathematics? 99
 2.3. Search for an epistemological obstacle: historical approach 100
 2.3.1. The case of numbers 100
 2.3.2. Methods and questions 101
 2.3.3. Fractions in ancient Egypt 101
 2.3.3.1. Identification of pieces of knowledge 102
 2.3.3.2. What are the advantages of using unit fractions? 104
 2.3.3.3. Does the system of unit fractions constitute an obstacle? 107
 2.4. Search for an obstacle from school situations: A current unexpected obstacle, the natural numbers. 107
 2.5. Obstacles and didactical engineering 110
 2.5.1. Local problems: lessons. How can an identified obstacle be dealt with? 110
2.5.2. "Strategic" problems: the curriculum. Which obstacles can be avoided and which accepted? 111
2.5.3. Didactical handling of obstacles 111
2.6. Obstacles and fundamental didactics 112
2.6.1. Problems internal to the class 113
2.6.2. Problems external to the class 114

Chapter 3 prelude 117

Chapter 3. Problems with teaching decimal numbers 119

1. Introduction 119

2. The teaching of decimals in the 1960s in France 121
 2.1. Description of a curriculum 121
 2.1.1. Introductory lesson 121
 2.1.2. Metric system. Problems 122
 2.1.3. Operations with decimal numbers 122
 2.1.4. Decimal fractions 123
 2.1.5. Justifications and proofs 123
 2.2. Analysis of characteristic choices of this curriculum and of their consequences 123
 2.2.1. Dominant conception of the school decimal in 1960 123
 2.2.2. Consequences for the multiplication of decimals 123
 2.2.3. The two representations of decimals 125
 2.2.4. The order of decimal numbers 125
 2.2.5. Approximation 126
 2.3. Influence of pedagogical ideas on this conception 126
 2.3.1. Evaluation of the results 126
 2.3.2. Classical methods 127
 2.3.3. Optimization 127
 2.3.4. Other methods 128
 2.4. Learning of "mechanisms" and "meaning" 128
 2.4.1. Separation of this learning and what causes it 128
 2.4.2. Algorithms 129

3. The teaching of decimals in the 1970s 131
 3.1. Description of a curriculum 131
 3.1.1. Introductory lesson 131
 3.1.2. Other bases. Decomposition 132
 3.1.3. Operations 132
 3.1.4. Order 132
 3.1.5. Operators. Problems 133
 3.1.6. Approximation 134
 3.2. Analysis of this curriculum 134
 3.2.1. Areas 134
TABLE OF CONTENTS

3.2.2. The decimal point 134
3.2.3. Order 134
3.2.4. Identification and evaporation 134
3.2.5. Product 135
3.2.6. Conclusion 135

3.3. Study of a typical curriculum of the ‘70s 136
3.3.1. The choices 136
3.3.2. Properties of the operations 136
3.3.3. Product 136
3.3.4. Operators 136
3.3.5. Fractions 136
3.3.6. Conclusion 137

3.4. Pedagogical ideas of the reform 138
3.4.1. The reform targets content 138
3.4.2. Teaching structures 138
3.4.3. Dienes’s psychodynamic process 139
3.4.4. The psychodynamic process and educational practice 142
3.4.5. Influence of the psychodynamic process on the teaching of decimals, critiques and comments 143
3.4.6. Conceptions and situations 144

Chapter 4. Didactical problems with decimals 149

1. General design of a process for teaching decimals 149
1.1. Conclusions from the mathematical study 149
1.1.1. Axioms and implicit didactical choices 149
1.1.2. Transformations of mathematical discourse 149
1.1.3. Metamathematics and heuristics 150
1.1.4. Extensions and restrictions 150
1.1.5. Mathematical motivations 151
1.2. Conclusion of the epistemological study 152
1.2.1. Different conceptions of decimals 152
1.2.2. Dialectical relationships between D and Q 153
1.2.3. Types of realized objects 154
1.2.4. Different meanings of the product of two rationals 154
1.2.5. Need for the experimental epistemological study 160
1.2.6. Cultural obstacles 160
1.3. Conclusions of the didactical study 160
1.3.1. Principles 160
1.3.2. The objectives of teaching decimals 161
1.3.3. Consequences: types of situations 161
1.3.4. New objectives 162
1.3.5. Options 163
TABLE OF CONTENTS

1.4. Outline of the process

1.4.1. Notice to the reader 164
1.4.2. Phase II: From measurement to the projections of D* 164
1.4.3. Phase I: From rational measures to decimal measures 166

2. Analysis of the process and its implementation 167

2.1. The pantograph

2.1.1. Introduction to pantographs: the realization of Phase 2.6 167
2.1.2. Examples of different didactical situations based on this schema of a situation 168
2.1.3. Place of this situation in the process 169
2.1.4. Composition of mappings (two sessions) 169
2.1.5. Mathematical theory/practice relationships 169
2.1.6. Different “levels of knowledge” relative to the compositions of the linear mappings 172
2.1.7. About research on didactique 175
2.1.8. Summary of the remainder of the process (2 sessions) 176
2.1.9. Limits of the process of reprise 176

2.2. The puzzle 177

2.2.1. The problem-situation 177
2.2.2. Summary of the rest of the process 179
2.2.3. Affective and social foundations of mathematical proof 179

2.3. Decimal approach to rational numbers (five sessions) 180

2.3.1. Location of a rational number within a natural-number interval 181
2.3.2. Rational-number intervals 181
2.3.3. Remainder of the process 182

2.4. Experimentation with the process 182

2.4.1. Methodological observations 182
2.4.2. The experimental situation 184
2.4.3. School results 185
2.4.4. Reproducibility—obsolescence 192
2.4.5. Brief commentary 194

3. Analysis of a situation: The thickness of a sheet of a paper 195

3.1. Description of the didactical situation (Session 1, Phase 1.1) 195

3.1.1. Preparation of the materials and the setting 195
3.1.2. First phase: search for a code (about 20–25 minutes) 195
3.1.3. Second phase: communication game (10 to 15 minutes) 197
3.1.4. Third phase: result of the games and the codes (20 to 25 minutes) [confrontation] 198
3.1.5. Results 200

3.2. Comparison of thicknesses and equivalent pairs (Activity 1, Session 2) 200

3.2.1. Preparation of materials and scene 200
3.2.2. First phase (25–30 minutes) 200
TABLE OF CONTENTS

3.2.3. Second phase: Completion of table; search for missing values (20–25 minutes) 202
3.2.4. Third phase: Communication game (15 minutes) 202
3.2.5. Results 203
3.2.6. Summary of the rest of the sequence (Session 3) 204
3.2.7. Results 204

3.3. Analysis of the situation—the game 204
3.3.1. The problem-situation 204
3.3.2. The didactical situation 205
3.3.3. The maintenance of conditions of opening and their relationship with the meaning of the knowledge 206
3.3.4. The didactical contract 207

3.4. Analysis of didactical variables. Choice of game 208
3.4.1. The type of situation 208
3.4.2. The choice of thicknesses: implicit model 209
3.4.3. From implicit model to explanation 210

4. Questions about didactique of decimals 212
4.1. The objects of didactical discourse 212
4.2. Some didactical concepts 213
4.2.1. The components of meaning 213
4.2.2. The didactical properties of a problem-situation 214
4.2.3. Situations, knowledge, behaviour 215

4.3. Return to certain characteristics of the process 215
4.3.1. Inadequacies of the process 215
4.3.2. Return to decimal-measurement 217
4.3.3. Remarks about the number of elements that allow the generation of a set 218
4.3.4. Partitioning and proportioning 218

4.4. Questions about methodology of research on didactique (on decimals) 221
4.4.1. Models of errors 221
4.4.2. Levels of complexity 221
4.4.3. Dependencies and implications 221

Chapters 3 and 4 postlude—Didactique and teaching problems 223

Chapter 5 prelude 225

Chapter 5. The didactical contract: the teacher, the student and the milieu 227

1. Contextualization and decontextualization of knowledge 227

2. Devolution of the problem and "dedidactification" 227
2.1. The problem of meaning of intentional knowledge 227
2.2. Teaching and learning 228
2.3. The concept of devolution 229
TABLE OF CONTENTS

3. Engineering devolution: subtraction
 3.1. The search for the unknown term of a sum
 3.2. First stage: devolution of the riddle
 3.3. Second stage: anticipation of the solution
 3.4. Third stage: the statement and the proof
 3.5. Fourth stage: devolution and institutionalization of an adidactical learning situation
 3.6. Fifth stage: anticipation of the proof

4. Institutionalization
 4.1. Knowing
 4.2. Meaning
 4.3. Epistemology
 4.4. The student's place
 4.5. Memory, time

5. Conclusions

Chapter 6 prelude

Chapter 6. *Didactique*: What use is it to a teacher?
 1. Objects of *didactique*
 2. Usefulness of *didactique*
 2.1. Techniques for the teacher
 2.2. Knowledge about teaching
 2.3. Conclusions
 3. Difficulties with disseminating *didactique*
 3.1. How one research finding reached the teaching profession
 3.2. What lesson can we draw from this adventure?
 4. *Didactique* and innovation

Appendix. The center for observations: The école Jules Michelet at Talence

Bibliography

References

Index of names

Index of subjects