1 Introduction 3

2 Exploratory data analysis 9
2.1 Univariate description 9
 2.1.1 Categorical variables 9
 2.1.2 Continuous variables 11
2.2 Bivariate description 19
 2.2.1 The scattergram 19
 2.2.2 Measures of bivariate relation 21
2.3 Univariate spatial description 22
 2.3.1 Location maps 23
 2.3.2 The h-scattergram 25
 2.3.3 Measures of spatial continuity and variability 26
 2.3.4 Application to indicator transforms 32
 2.3.5 Spatial continuity of metal concentrations 36
2.4 Bivariate spatial description 46
 2.4.1 The cross h-scattergram 46
 2.4.2 Measures of spatial cross continuity/variability 46
 2.4.3 The scattergram of h-increments 49
 2.4.4 Measures of joint variability 50
 2.4.5 Application to indicator transforms 52
 2.4.6 Spatial relations between metal concentrations 54
2.5 Main features of the Jura data 56
3 The random function model 59
 3.1 Deterministic and probabilistic models 59
 3.2 The random function model 63
 3.2.1 Random variable 63
 3.2.2 Random function 68
 3.3.3 Multivariate random function 72

4 Inference and modeling 75
 4.1 Statistical inference 75
 4.1.1 Preferential sampling 76
 4.1.2 Histogram declustering 77
 4.1.3 Semivariogram inference 82
 4.1.4 Covariance inference 86
 4.2 Modeling a regionalization 87
 4.2.1 Permissible models 87
 4.2.2 Anisotropic models 90
 4.2.3 The linear model of regionalization 95
 4.2.4 The practice of modeling 97
 4.3 Modeling a coregionalization 107
 4.3.1 Permissible models 108
 4.3.2 The linear model of coregionalization 108
 4.3.3 The practice of modeling 116

5 Local estimation: Accounting for a single attribute 125
 5.1 The kriging paradigm 125
 5.2 Simple kriging 127
 5.3 Ordinary kriging 132
 5.4 Kriging with a trend model 139
 5.5 Block kriging 152
 5.6 Factorial kriging 158
 5.7 Dual kriging 169
 5.8 Miscellaneous aspects of kriging 174
 5.8.1 Kriging weights 174
 5.8.2 Search neighborhood 178
 5.8.3 Kriging variance 179
 5.8.4 Re-estimation scores 181

6 Local estimation: Accounting for secondary information 185
 6.1 Exhaustive secondary information 185
 6.1.1 Kriging within strata 187
 6.1.2 Simple kriging with varying local means 190
 6.1.3 Kriging with an external drift 194
 6.1.4 Performance comparison 199
 6.2 The cokriging approach 203
 6.2.1 The cokriging paradigm 203
 6.2.2 Simple cokriging 205
6.2.3 Ordinary cokriging 224
6.2.4 Standardized ordinary cokriging 232
6.2.5 Principal component kriging 233
6.2.6 Colocated cokriging 235
6.2.7 Accounting for soft information 241
6.2.8 Performance comparison 248
6.2.9 Multivariate factorial kriging 251

7 Assessment of local uncertainty 259
7.1 Two models of local uncertainty 259
7.1.1 Local confidence interval 261
7.1.2 Local probability distributions 262
7.2 The multiGaussian approach 265
7.2.1 The multiGaussian model 265
7.2.2 Normal score transform 266
7.2.3 Checking the multiGaussian assumption 271
7.2.4 Estimating the Gaussian ccdf parameters 275
7.2.5 Increasing the resolution of the sample cdf 278
7.3 The indicator approach 284
7.3.1 Indicator coding of information 285
7.3.2 Updating into ccdf values 293
7.3.3 Accounting for secondary information 306
7.3.4 Correcting for order relation deviations 319
7.3.5 Interpolating/extrapolating ccdf values 326
7.3.6 Modeling uncertainty for categorical attributes 328
7.4 Using local uncertainty models 331
7.4.1 Measures of local uncertainty 333
7.4.2 Optimal estimates 340
7.4.3 Decision making in the face of uncertainty 347
7.4.4 Simulation 351
7.4.5 Classification of categorical attributes 354
7.5 Performance comparison 358

8 Assessment of spatial uncertainty 369
8.1 Estimation versus simulation 369
8.2 The sequential simulation paradigm 376
8.3 Sequential Gaussian simulation 380
8.3.1 Accounting for a single attribute 380
8.3.2 Accounting for secondary information 385
8.3.3 Joint simulation of multiple variables 390
8.4 Sequential indicator simulation 393
8.4.1 Accounting for a single attribute 395
8.4.2 Accounting for secondary information 400
8.4.3 Joint simulation of multiple variables 400
8.5 The LU decomposition algorithm 403
8.6 The p-field simulation algorithm 405