Environmental and engineering geophysics

Prem V. Sharma
Emeritus Professor, Niels Bohr Institute
University of Copenhagen
Contents

Preface xxvi
Acknowledgments xxviii

Chapter 1 Introductory observations 1
1.1 Geophysics and the earth’s environment 1
1.2 Geophysical techniques for near-surface studies 2
1.3 Environmental problems amenable to solution by
geophysical means 3
1.4 Engineering geophysical investigations: targets and techniques 4
1.5 Units used in this book 4
1.6 Geological time-scale 7
References 10

Chapter 2 Gravity surveying 11
2.1 Introduction 11
2.2 Characteristics of potential fields 12
2.2.1 Gravitational force, potential, and field 12
2.2.2 Laplace’s equation and Poisson’s theorem 14
2.3 Rock densities 15
2.4 Acquisition and correction of gravity data 16
2.4.1 Gravity measuring instruments 16
2.4.2 Survey procedures
Location and spacing of stations; positions and elevations of stations; gravity gradient survey

2.4.3 Corrections to gravity data

2.4.4 Free-air and Bouguer anomalies

2.4.5 In-situ determination of density

2.5 Analysis and interpretation of gravity data

2.5.1 General considerations

2.5.2 Ambiguity in gravity interpretation

2.5.3 Isolation of anomalies: regionals and residuals

2.5.4 Enhancement of anomalies
Digital filtering; wavelength filters; continuation filters; derivative filters

2.5.5 Estimates of depth and anomalous mass

2.5.6 Methodology of interpretation
General approach; forward modeling; inverse modeling

2.6 Applications to environmental and engineering studies

2.6.1 Delineation of structural trends, contacts, and faults

2.6.2 Mapping of salt structures

2.6.3 Estimating shape and depth of plutons

2.6.4 Mapping of alluvium/bedrock contact

2.6.5 Gravity investigations of landfill

2.6.6 Microgravity studies of rockbursts in mines

2.6.7 Gravity investigations of landfill

References

Chapter 3 Magnetic surveying

3.1 Introduction

3.2 Physical basis of magnetic surveys

3.2.1 Magnetic quantities and units
Magnetic potential and field; intensity of magnetization and moment

3.2.2 Dipole field and the geomagnetic anomaly

3.3 Magnetic properties of rocks and soils

3.3.1 Induced magnetization and susceptibility

3.3.2 Remanent magnetization

3.3.3 Total magnetization and effective susceptibility

3.3.4 Magnetic effects of soils and iron objects
### Contents

3.4 Acquisition of magnetic data  
3.4.1 Magnetic survey instruments  
3.4.2 Survey procedures and data correction  

3.5 Data enhancement techniques  
3.5.1 Derivatives and continuation filters  
3.5.2 Reduction-to-pole and pseudogravity transformation  
3.5.3 Analytic signal of magnetic anomaly field  

3.6 Approximate methods of interpretation  
3.6.1 Estimation of depth  
3.6.2 Estimates of direction of magnetization and source boundaries  

3.7 Quantitative interpretation of magnetic data  
3.7.1 Forward modeling  
3.7.2 Inversion of magnetic data  

3.8 Environmental and engineering applications  
3.8.1 Mapping of structural trends and basement features  
3.8.2 Magnetic investigations over landfills  
3.8.3 Detection of buried metal drums and casings  
3.8.4 Mapping of cavities and voids  
3.8.5 Mapping of dikes blocking groundwater flow  
3.8.6 Detection of archaeological objects  

References  

Chapter 4 Seismic surveys  

4.1 Introduction  

4.2 Elastic waves and propagation parameters  
4.2.1 Body and surface waves  
4.2.2 Pulse frequency, and attenuation characteristics  
4.2.3 Reflection, refraction, and diffraction of waves  

4.3 Seismic velocities in rocks  
4.3.1 Factors affecting velocity  
4.3.2 Velocity-density and velocity-porosity relationships  
4.3.3 Velocity data  

4.4 Reflection surveying  
4.4.1 Introduction  

References  

112
4.4.2 Data acquisition in shallow seismics 124
Seismic sources; geophones and arrays; seismographs and filters; field parameters

4.4.3 Reflection geometry and the concept of NMO 130
Horizontal reflectors; dipping reflector

4.4.4 Common-depth point (CDP) technique 134

4.4.5 Static and dynamic corrections 135
Static corrections; dynamic or NMO corrections

4.4.6 Determination of average velocities 137
$T^2-x^2$ method; velocity-spectrum method; well-shooting and CVL methods

4.4.7 Synthesis of reflection traces 139

4.4.8 Processing of reflection data 140

4.4.9 Migration of reflection points 142

4.4.10 Shallow reflection profiling: CDP and COF techniques 143
Optimum offset technique

4.4.11 Resolution limits in reflection mapping 148

4.4.12 Applications to environmental and engineering problems 149
Mapping of fracture zones; reflection profiling in groundwater studies; delineation of bedrock valleys; detection of shallow faults and cavities

4.5 Refraction surveying 158

4.5.1 Introduction 158

4.5.2 Mapping of horizontal interfaces: intercept time method 158

4.5.3 Horizontal versus vertical velocity changes 161

4.5.4 Mapping of faults and steep contacts 162

4.5.5 Mapping of dipping interfaces 164

4.5.6 Mapping irregular (non-planar) interfaces 166

4.5.7 Interpretation by generalized reciprocal method 170

4.5.8 Refraction survey data acquisition 173

4.5.9 Applicability and limitations of the refraction method 173

4.5.10 Environmental and engineering applications 175
Velocity as a guide to rock strength; detection of potential collapse features; mapping of buried ancient ditch; mapping of gravel and sand deposits; dam site investigations

References 186

Chapter 5  Self-potential surveying 190

5.1 Introduction 190
Chapter 5  

### 5.2 Origin of self-potentials

Electrofiltration; thermoelectric; electrochemical; mineralization

### 5.3 Data acquisition and noise suppression

- **5.3.1 Field procedure**  
- **5.3.2 Noise suppression and data enhancement**

### 5.4 Interpretation of SP data

### 5.5 Applications to environmental and engineering problems

- **5.5.1 Seepage flow in a landslide body**
- **5.5.2 Seepage flow in dams and reservoir floors**
- **5.5.3 Delineation of groundwater flow**
- **5.5.4 Studies of geothermal fluid flow**

### References

---

Chapter 6  

**Resistivity and induced polarization surveys**

### 6.1 Introduction

### 6.2 Electrical resistivity of earth materials

### 6.3 Theory of current flow in the ground

- **6.3.1 Potential distribution in homogeneous ground**
- **6.3.2 Apparent resistivity and electrode configurations**
- **6.3.3 Potential and current distribution across a boundary**
- **6.3.4 Computation of apparent resistivity by linear filters**

### 6.4 Field procedures and selection of electrode array

- **6.4.1 Electric sounding and profiling procedures**
  - Vertical electric sounding; electric profiling
- **6.4.2 Selecting an array for a particular application**

### 6.5 Resistivity instruments and electrode layouts

### 6.6 Interpretation of resistivity data

- **6.6.1 General**
- **6.6.2 Interpretation by master curves and auxiliary graphs**
- **6.6.3 Forward and inverse modeling techniques**
- **6.6.4 Ambiguity in interpretation of sounding curves**
- **6.6.5 Interpretation of lateral resistivity contrasts**
- **6.6.6 Interpretation of combined electric profiling and sounding**

### 6.7 Applications of resistivity surveys
6.7.1 Groundwater exploration and water quality 237
Delineation of aquifer boundaries in sedimentary layers; groundwater in fissured rocks; mapping boundaries of saline groundwater

6.7.2 Examples of environmental and engineering applications 242
Mapping of chemical pollution plumes; delineation of water-saturated zones in landslide bodies; location of permafrost zones; location of archaeological objects; location of cavities and voids

6.7.3 Resistivity characteristics of geothermal fluids 249

6.8 Induced polarization method 252
6.8.1 Principles 252
6.8.2 Time-domain and frequency-domain measurements 254
6.8.3 Data acquisition 254
Equipment; field procedures
6.8.4 Interpretation of IP data 256
6.8.5 Examples of applications to environmental studies 257
Evaluation of aquifer potential; investigation of domestic waste dump; mapping of industrial contamination 258

References 261

Chapter 7 Electromagnetic surveys 265

7.1 Introduction 265

7.2 Theory of propagation of EM fields 266
7.2.1 Fundamental quantities and field equations 266
7.2.2 Attenuation of EM fields, and depth penetration 268
7.2.3 Phase relations and elliptic polarization of EM fields 270

7.3 Classification of EM methods 272

7.4 Continuous wave field methods (frequency-domain EM) 273
7.4.1 VLF and VLF-R methods 273
Conventional VLF; VLF-resistivity method 273
7.4.2 Horizontal loop (Slingram) method 277
7.4.3 Ground conductivity meters 280
7.4.4 Examples of applications to environmental problems 282
Delineation of contamination plume from waste dumps; mapping industrial groundwater contamination; mapping soil salinity in farmland

7.5 Transient-field methods (time-domain EM) 286
7.5.1 Principles and operational designs 286
7.5.2 Interpretation of TDEM data 288
7.5.3 Examples of environmental studies 288
  Mapping of contamination plume at a landfill site; mapping of brine pockets at a waste repository site
7.5.4 Nuclear magnetic resonance (NMR) method 292

7.6 Interpretation of EM data 293
  7.6.1 Use of interpretational aids 293
  7.6.2 Ambiguity in EM interpretation 296

7.7 Magnetotelluric methods 296
  7.7.1 Principles of MT sounding 297
  7.7.2 AMT and CSAMT methods 298
  7.7.3 Inversion of AMT data 298
  7.7.4 Examples of AMT surveys 300
    Mapping of permafrost zones; AMT investigations in geothermal areas 300

7.8 Radio imaging method (RIM) 302
  7.8.1 Principles and practices 302
  7.8.2 Example of imaging a fault zone 304

References 306

Chapter 8 Ground-probing radar 309

8.1 Introduction 309
8.2 Basic principles 310
  8.2.1 Radar propagation parameters 310
  8.2.2 Range and resolution 311
8.3 Data acquisition and processing 313
8.4 Determination of radar velocities 314
8.5 Examples of environmental and engineering applications 316
  8.5.1 Detection of fracture zones 316
  8.5.2 Delineation of subsurface oil contamination 318
  8.5.3 Mapping of geological contacts in frozen ground 320
  8.5.4 Location of sinkholes and cavities 321
  8.5.5 Detection of anomalous seepage 322
  8.5.6 Mapping of archaeological remnants 323
  8.5.7 Non-destructive testing of rock quality and structural integrity 325

References 328
Chapter 9  Radioactivity surveys 330

9.1 Introduction 330

9.2 Fundamentals of radioactive disintegration 331

9.3 Units of radiation and dosage 332

9.4 Radioactive decay series and equilibrium 333

9.5 Radioactivity of rocks 334

9.6 Instruments for measuring radioactivity 335
   9.6.1 Geiger counter and scintillometer 335
   9.6.2 Gamma-ray spectrometer 336
   9.6.3 Radon emanometers 337

9.7 Field procedure and operational considerations 337

9.8 Environmental concerns about radon 338
   9.8.1 Generation of radon 338
   9.8.2 Radon transport mechanisms 339
   9.8.3 Radon-risk index 340

9.9 Examples of environmental radioactivity surveys 340
   9.9.1 Assessment of indoor radon risk and groundwater contamination 341
   9.9.2 Radiation from industrial and domestic waste pumps 343
   9.9.3 Chernobyl radioactive fallout 345
   9.9.4 Detection of faults and fracture zones 347
   9.9.5 Radon-monitoring applied to earthquake prediction 347
   9.9.6 Investigations of landslide development 348
   9.9.7 Monitoring of radioactive contamination migration in subsurface 349

References 350

Chapter 10  Geothermal surveying 352

10.1 Introduction 352

10.2 Thermal properties of rocks 353

10.3 Propagation of thermal effects in the underground region 353
   10.3.1 Depth penetration of surface temperature variations 353
   10.3.2 Temperature distribution in the frozen ground 356
### 10.4 Conductive heat flow and thermal gradient

10.4.1 Heat-flow measurements 357
10.4.2 Factors affecting thermal gradient 358

### 10.5 Heat production in crustal rocks 360

### 10.6 Temperature rise due to radioactive disposal in subsurface 361

### 10.7 Shallow thermal investigation methods 365

10.7.1 Shallow temperature surveys 365
10.7.2 Snow-melt photography and infrared imagery 366

### 10.8 Examples of shallow thermal surveys 366

10.8.1 Mapping of fissures and cracks 366
10.8.2 Location of leakage in pipelines 367
10.8.3 Thermal anomalies over salt and granite bodies 368
10.8.4 Temperature anomalies over waste dumps 370
10.8.5 Thermal detection of zones of weakness and leakage in dams 370

References 372

### Chapter 11  Geophysical borehole logging 375

11.1 Introduction 375

11.2 General aspects of logging systems 376

11.3 Conventional borehole logging techniques in environmental investigations 376

11.3.1 Caliper logs 377
11.3.2 Electrical logs 377
11.3.3 Radiometric logs 380
11.3.4 Acoustic logs 384
11.3.5 Temperature logs 386

11.4 Specialized techniques for micrologging and fluid flow detection 388

11.4.1 The Ellog auger method 388
11.4.2 Microresistivity logging 389
11.4.3 Borehole televiewer log 391
11.4.4 Full waveform acoustic logging (FWAL) 392
11.4.5 Chemical/Radioactive tracer logs 393

11.5 Cross-borehole tomography for fracture and fluid flow detection 395

References 398
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>400</td>
</tr>
<tr>
<td>12.2</td>
<td>The inverse problem and its formulation</td>
<td>400</td>
</tr>
<tr>
<td>12.3</td>
<td>Linear inverse problems and methods of solution</td>
<td>402</td>
</tr>
<tr>
<td>12.3.1</td>
<td>The Fourier method of linear inversion</td>
<td>402</td>
</tr>
<tr>
<td>12.3.2</td>
<td>The matrix method applied to linear problems</td>
<td>404</td>
</tr>
<tr>
<td>12.4</td>
<td>Non-linear problems and methods of solution</td>
<td>407</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Linearization of the non-linear problem</td>
<td>407</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Unconstrained and constrained iterative solutions</td>
<td>408</td>
</tr>
<tr>
<td>12.5</td>
<td>Sample applications to non-linear problems</td>
<td>409</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Inversion of gravity and magnetic data</td>
<td>409</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Inversion of vertical electric sounding data</td>
<td>415</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Inversion of electromagnetic data</td>
<td>419</td>
</tr>
<tr>
<td>12.6</td>
<td>Introduction to tomography</td>
<td>425</td>
</tr>
<tr>
<td>12.6.1</td>
<td>The basic concept of tomography</td>
<td>425</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Tomography in exploration geophysics</td>
<td>427</td>
</tr>
<tr>
<td>12.6.3</td>
<td>Radon transform</td>
<td>428</td>
</tr>
<tr>
<td>12.7</td>
<td>Discretization methods in tomography</td>
<td>430</td>
</tr>
<tr>
<td>12.7.1</td>
<td>Generalized matrix method</td>
<td>431</td>
</tr>
<tr>
<td>12.7.2</td>
<td>Algebraic reconstruction technique (ART)</td>
<td>433</td>
</tr>
<tr>
<td>12.7.3</td>
<td>Simultaneous iterative reconstruction technique (SIRT)</td>
<td>436</td>
</tr>
<tr>
<td>12.8</td>
<td>Transform methods of image reconstruction</td>
<td>436</td>
</tr>
<tr>
<td>12.8.1</td>
<td>Fourier projection method</td>
<td>437</td>
</tr>
<tr>
<td>12.8.2</td>
<td>Filtered back-projection (FBP) method</td>
<td>439</td>
</tr>
<tr>
<td>12.8.3</td>
<td>Wave diffraction method</td>
<td>439</td>
</tr>
<tr>
<td>12.8.4</td>
<td>EM diffraction tomography</td>
<td>444</td>
</tr>
<tr>
<td>12.9</td>
<td>Electrical resistance tomography (ERT)</td>
<td>445</td>
</tr>
</tbody>
</table>

References | 448 |
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A Analytical continuation of potential fields</td>
<td>452</td>
</tr>
<tr>
<td>Appendix B Gravity and magnetic attraction of finite vertical or</td>
<td>455</td>
</tr>
<tr>
<td>horizontal cylinder</td>
<td></td>
</tr>
<tr>
<td>Appendix C Magnetic anomaly of a right rectangular prism with an</td>
<td>458</td>
</tr>
<tr>
<td>arbitrary direction of magnetization vector</td>
<td></td>
</tr>
<tr>
<td>Appendix D Fourier series, transforms, and convolution</td>
<td>462</td>
</tr>
<tr>
<td>Appendix E Poynting vector resistivity and the Bostick inversion</td>
<td>466</td>
</tr>
<tr>
<td>Index</td>
<td>468</td>
</tr>
</tbody>
</table>