Principles of Glacier Mechanics

Roger LeB. Hooke

Adjunct Professor
Department of Geology and Institute for Quaternary Studies
University of Maine, Orono

Professor
Department of Geology and Geophysics
University of Minnesota, Minneapolis

A textbook for upper division and graduate students with an interest in the flow of glaciers and the origins of landforms produced by glaciers
Contents

Preface vii

Chapter 1: Why Study Glaciers? 1

Chapter 2: Some Basic Concepts 4

A Note on Units 4
Glacier Size, Shape, and Temperature 4
The Condition of Incompressibility 6
Stresses and Strain Rates 8

Chapter 3: Mass Balance 13

The Transformation of Snow to Ice 13
Snow Stratigraphy 15
Mass-Balance Principles 18
Causes of Mass-Balance Fluctuations 19
The Budget Gradient 22
Effect of Weather Patterns on Mass-Balance Fluctuations 24
Summary 26

Chapter 4: Flow of a Crystalline Material 27

Crystal Structure of Ice 27
Dislocations 28
Rate-Limiting Processes 32
Internal Stresses 35
Recrystallization 36
Deformation Mechanism Maps 38
A Flow Law for Glacier Ice 41
Summary 44
Chapter 5: The Velocity Field in a Glacier

Balance Velocity 47
Shear-Stress Distribution 47
Horizontal Velocity at Depth in an Ice Sheet 48
Horizontal Velocity in a Valley Glacier 50
Mean Velocity and Ice Flux 53
Vertical Velocity 54
Submergence and Emergence Velocities 55
Flow Field 56
Transverse Profiles of Surface Elevation on a Valley Glacier 56
Effect of Drifting Snow on the Velocity Field 58
Inhomogeneities in the Flow Field in Large Ice Sheets: Ice Streams 61
Summary 64

Chapter 6: Temperature Distribution in Polar Ice Sheets

Energy Balance in an Ice Sheet 65
Dependence of κ on Temperature 69
The Steady-State Temperature Profile at the Center of an Ice Sheet 70
Temperature Profiles in the Ablation Zone 77
Temperature Profiles Near the Surface of an Ice Sheet 77
Temperature Distributions Far from a Divide 79
Basal Temperatures in Antarctica: Comparison of Solutions
Using the Column and Flowline Models 82
Englacial and Basal Temperatures Along a Flowline Using the Column Model 88
Geomorphologic Implications 90
Summary 90

Chapter 7: The Coupling Between a Glacier and Its Bed

Sliding 92
Deformation of Subglacial Till 106
Ploughing and Decoupling 116
Summary 117

Chapter 8: Water Flow in and under Glaciers: Geomorphic Implications

The Upper Part of the Englacial Hydraulic System 119
Equipotential Surfaces in a Glacier 122
Melt Rates in Conduits 125
Water Pressures in Englacial and Subglacial Conduits 127
Shapes of Subglacial Conduits 132
The Linked-Cavity Drainage System 134
Transitions Between Conduit and Linked-Cavity Systems 136
Multibranched Aborescent System of Individually Braided Conduits 138
Surges 139
Subglacial Conduits on Deforming Till 140
Subglacial Drainage Paths and the Formation of Eskers 142
Water Pressure Fluctuations and Glacier Quarrying 148