Quaternions and Cayley Numbers

Algebra and Applications

by

J. P. Ward

Department of Mathematical Sciences,
Loughborough University,
Loughborough, England

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON
CONTENTS

Preface vii

1 Fundamentals of Linear Algebra
 1.1 Integers, Rationals and Real Numbers 1
 1.2 Real Numbers and Displacements 5
 1.3 Groups 9
 1.4 Rings and Fields 14
 1.5 Linear Spaces 19
 1.6 Inner Product Spaces 27
 1.7 Algebras 38
 1.8 Complex Numbers 42

2 Quaternions
 2.1 Inventing Quaternions 54
 2.2 Quaternion Algebra 62
 2.3 The Exponential Form and Root Extraction 70
 2.4 Frobenius’ Theorem 72
 2.5 Inner Product for Quaternions 76
 2.6 Quaternions and Rotations in 3- and 4-Dimensions 78
 2.7 Relation to the Rotation Matrix 89
 2.8 Matrix Formulation of Quaternions 91
 2.9 Applications to Spherical Trigonometry 95
 2.10 Rotating Axes in Mechanics 102

3 Complexified Quaternions
 3.1 Scalars, Pseudoscalars, Vectors and Pseudovectors 105
 3.2 Complexified Quaternions: Euclidean Metric 107
 3.3 Complexified Quaternions: Minkowski Metric 114
 3.4 Application of Complexified Quaternions to Space-Time 120
 3.5 Quaternions and Electromagnetism 133
 3.6 Quaternionic Representation of Bivectors 139
 3.7 Null Tetrad for Space-time 146
 3.8 Classification of Complex Bivectors and of the Weyl Tensor 158
4 Cayley Numbers

4.1 A Common Notation for Numbers 164
4.2 Cayley Numbers 167
4.3 Angles and Cayley Numbers 173
4.4 Cayley Number Identities 177
4.5 Normed Algebras and the Hurwitz Theorem 183
4.6 Rotations in 7- and 8-Dimensional Euclidean Space 195
4.7 Basis Elements for Cayley Numbers 206
4.8 Geometry of 8-Dimensional Rotations 213

Appendix 1 Clifford Algebras 217

Appendix 2 Computer Algebra and Cayley Numbers 225

References 231

Index 233