Contents

Preface ix

Part I Basics of set theory 1

1 Axiomatic set theory 3
 1.1 Why axiomatic set theory? 3
 1.2 The language and the basic axioms 6

2 Relations, functions, and Cartesian product 12
 2.1 Relations and the axiom of choice 12
 2.2 Functions and the replacement scheme axiom 16
 2.3 Generalized union, intersection, and Cartesian product 19
 2.4 Partial- and linear-order relations 21

3 Natural numbers, integers, and real numbers 25
 3.1 Natural numbers 25
 3.2 Integers and rational numbers 30
 3.3 Real numbers 31

Part II Fundamental tools of set theory 35

4 Well orderings and transfinite induction 37
 4.1 Well-ordered sets and the axiom of foundation 37
 4.2 Ordinal numbers 44
 4.3 Definitions by transfinite induction 49
 4.4 Zorn’s lemma in algebra, analysis, and topology 54

5 Cardinal numbers 61
 5.1 Cardinal numbers and the continuum hypothesis 61
 5.2 Cardinal arithmetic 68
 5.3 Cofinality 74
Table of Contents

Part III The power of recursive definitions

6 **Subsets of \(\mathbb{R}^n \)**
6.1 Strange subsets of \(\mathbb{R}^n \) and the diagonalization argument
6.2 Closed sets and Borel sets
6.3 Lebesgue-measurable sets and sets with the Baire property

7 **Strange real functions**
7.1 Measurable and nonmeasurable functions
7.2 Darboux functions
7.3 Additive functions and Hamel bases
7.4 Symmetrically discontinuous functions

Part IV When induction is too short

8 **Martin’s axiom**
8.1 Rasiowa–Sikorski lemma
8.2 Martin’s axiom
8.3 Suslin hypothesis and diamond principle

9 **Forcing**
9.1 Elements of logic and other forcing preliminaries
9.2 Forcing method and a model for \(\lnot \text{CH} \)
9.3 Model for CH and \(\Diamond \)
9.4 Product lemma and Cohen model
9.5 Model for MA+\(\lnot \text{CH} \)

A **Axioms of set theory**
B **Comments on the forcing method**
C **Notation**

References
Index