Mathematics of Climate Modeling

Valentin P. Dymnikov
Aleksander N. Filatov

Birkhäuser
Boston • Basel • Berlin
CONTENTS

PREFACE .. vii
INTRODUCTION .. ix

Chapter 1. DYNAMICAL SYSTEMS. ATTRACTORS,
INERTIAI MEASURES ... 1
1.1 Metric Spaces. Compactness ... 5
1.2 Dynamical Systems. Main Properties 9
1.3 Invariant Sets ... 14
1.4 Classification of Motions .. 16
1.5 Recurrence of Domains ... 23
1.6 Measure. Krylov-Bogolyubov Theorem 29
1.7 Dynamical Systems with Invariant Measure 41
1.8 Nonlinear Dissipative Systems .. 52
1.9 Inertial Manifolds of Dissipative Systems 67

Chapter 2. NON-AUTONOMOUS DISSIPATIVE SYSTEMS,
THEIR ATTRACTOR AND AVERAGING 77
2.1 Introduction .. 77
2.2 Processes and their Attractors. Kernel of Processes, 81
Section of Kernel ... 81
2.3 Families of Processes and their Attractors 85
2.4 Family of Processes and Semigroups 88
2.5 Averaging of Nonlinear Dissipative Systems. Closeness
between Attractors of Original and Averaged Systems 93
2.6 On Closeness of Solutions of Original and Averaged
Nonlinear Dissipative Systems on Infinite Time Interval 102

Chapter 3. ANALYSIS OF BAROTROPIC MODEL 109
3.1 Existence of Global Attractor ... 109
3.2 Estimate of Dimension of Attractor 105
3.3 Statistical Solutions and Invariant Measures on Attractor 107
3.4 Estimate of Attractor Dimension with Respect to
Orography ... 121
3.5 Galerkin Approximations .. 125
3.6 Existence of Inertial Manifold .. 126

Chapter 4. DISCRETIZATION OF SYSTEMS POSSESSING
ATTRACTOR ... 131
4.1 Discretization of Systems Possessing Inertial Manifolds ... 132
4.2 Time-Space Discretization of Systems Possessing Attractor 133
4.3 Globally Stable Difference Schemes for Barotropic
Vorticity Equation ... 143
Chapter 5. NUMERICAL STUDY OF STRUCTURE OF ATTRACTOR GENERATED BY BAROTROPIC EQUATIONS ON SPHERE ... 171
 5.1 Equations and Parameters of Model. Methods of Solving of Stationary and Nonstationary Problems 176
 5.2 Statistical Stationary Solution and Stationary Points 180
 5.3 Lyapunov Exponents and Attractor Dimension 287
 5.4 Analysis of Analytical Estimates of Attractor Dimension of Barotropic Atmospheric Equations 188
Chapter 6. TWO-LAYER BAROCLINIC MODEL 189
 6.1 Two-Layer Baroclinic Model 193
 6.2 Estimate of Attractor Dimension 203
Chapter 7. INVESTIGATION OF STRUCTURE OF CLIMATE ATTRACTORS BY OBSERVED DATA SERIES 211
 7.1. Correlation Dimension of Attractor 213
 7.2. Calculation of Lyapunov Exponents 216
 7.3 Statistically Independent Degrees of Freedom and Attractor Dimension .. 217
Chapter 8. REGIMES OF ATMOSPHERE CIRCULATION ... 221
 8.1 Definition of Atmosphere Circulation Regimes 221
 8.2 Dynamical Theory of Two-Regime Barotropic Circulation 223
 8.3. Statistical Theory of Two-Regime Barotropic Circulation 229
 8.4 S-Regimes of Atmosphere Circulation 233
Chapter 9. SOLVABILITY OF OCEAN AND ATMOSPHERE MODELS ... 235
 9.1 Introduction ... 235
 9.2 Solvability of Ocean and Atmosphere Models in Bounded Domains ... 236
 9.3 Solvability of Ocean and Atmosphere Models on Sphere in p-System of Coordinates ... 246
BIBLIOGRAPHY .. 247
INDEX .. 259