Contents

Preface ix

Chapter 1. GENERAL OPTIMALITY
1.1. Φ-subgradients and Φ-supergradients 1
1.2. Duality 16
1.3. Optimization problems with constraints 21
1.4. Φ-convex sets 23
1.5. Φ-convexity in linear spaces 28
1.6. Φ-separation 37
1.7. Constraints of multifunction type 40
1.8. Polarity and duality 50

Chapter 2. OPTIMIZATION IN METRIC SPACES
2.1. Φ-convex functions in topological and metric spaces 56
2.2. Ekeland Variational Principle and existence of Φ-subgradients 61
2.3. Well-conditioned functions 67
2.4. Duality in metric spaces 76
2.5. Local minima 97
2.6. Local subgradients, supergradients and gradients 110
2.7. Optimization with constraints. Outer and inner approximations in
metric spaces 130
2.8. Fréchet differentiability of real-valued functions 135
2.9. Φ-subgradients, Φ-supergradients and Φ-gradients of superpositions 141
2.10. On differentiability in normed spaces 150

Chapter 3. MULTIFUNCTIONS AND MARGINAL FUNCTIONS IN METRIC
SPACES
3.1. Lower semicontinuity of marginal functions 171
3.2. Local optimization problems 184
3.3. Exact penalties 197
3.4. Almost lower semi-continuous multifunctions 206
3.5. Behaviour of minimal sets as multifunctions 212
3.6. Behaviour of Φ-subdifferentials as a multifunction 223

Chapter 4. WELL-POSEDNESS AND WEAK WELL-POSEDNESS IN
BANACH SPACES
4.1. Convexity with respect to linear continuous functionals 231
4.2. Well-posed problems for linear functionals on convex sets 240
4.3. Streams with bounded bases 248
4.4. Weakly well-posed problems .. 254
4.5. Well-posedness and weak well-posedness and the drop property
 for unbounded sets .. 261
4.6. Uniformly well-posed problems 273
4.7. Uniformly weakly well-posed problems 287

Chapter 5. DUALITY IN BANACH AND HILBERT SPACES.
REGULARIZATION

5.1. Fenchel conjugate functions in Banach spaces 294
5.2. Quadratic regularization in Hilbert spaces 296
5.3. The density of the points of differentiability of convex functions ... 305

Chapter 6. NECESSARY CONDITIONS FOR OPTIMALITY AND LOCAL
OPTIMALITY IN NORMED SPACES.

6.1. Inner and outer conical approximation in normed spaces 313
6.2. Upper and lower limits of multifunctions in topological spaces. 336
6.3. Dubovitzkii-Milyutin theorem in locally convex spaces 341
6.4. Dolecki approximations .. 364
6.5. Necessary conditions of the first order for local optimality 374

Chapter 7. POLYNOMIALS. NECESSARY AND SUFFICIENT CONDITIONS
OF OPTIMALITY OF HIGHER ORDER

7.1. Polynomials. Higher order necessary and sufficient conditions of
 optimality without constraints 390
7.2. Higher order necessary and sufficient conditions of optimality with
 constraints ... 396
7.3. Method of reduction of constraints 403

Chapter 8. NONDIFFERENTIABLE OPTIMIZATION

8.1. DC-functions and the approximation of the first order by DC-functions. 412
8.2. Construction of universal derivative 432
8.3. Quasidifferentiable functions 441
8.4. Point derivatives and critical points 448
8.5. Regular points and the locally open range of quasidifferentiable
 functions ... 455
8.6. Higher order derivatives for quasidifferentiable functions 458
8.7. Optimality conditions in quasidifferentiable optimization 464

Chapter 9. NUMERICAL ASPECTS

9.1. The Φ-bundle method .. 469
9.2. The subgradient method ... 475
9.3. The Karush-Kuhn-Tucker system 483
9.4. The nonlinear complementarity problem 486