Generalized Vector and Dyadic Analysis
Applied Mathematics in Field Theory
Second Edition

Chen-To Tai
Professor Emeritus
Radiation Laboratory
Department of Electrical Engineering
and Computer Science
University of Michigan

IEEE Antennas & Propagation Society, Sponsor

IEEE PRESS
The Institute of Electrical and Electronics Engineers, Inc.
New York

Oxford University Press
Oxford, Tokyo, Melbourne
Contents

Preface to the Second Edition xi
Preface to the First Edition xiii
Acknowledgments for the First Edition xv

1 Vector and Dyadic Algebra 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Representations of Vector Functions</td>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
<td>Products and Identities</td>
<td>4</td>
</tr>
<tr>
<td>1-3</td>
<td>Orthogonal Transformation of Vector Functions</td>
<td>8</td>
</tr>
<tr>
<td>1-4</td>
<td>Transform of Vector Products</td>
<td>14</td>
</tr>
<tr>
<td>1-5</td>
<td>Definition of Dyadics and Tensors</td>
<td>16</td>
</tr>
<tr>
<td>1-6</td>
<td>Classification of Dyadics</td>
<td>17</td>
</tr>
<tr>
<td>1-7</td>
<td>Products Between Vectors and Dyadics</td>
<td>19</td>
</tr>
</tbody>
</table>

2 Coordinate Systems 23

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>General Curvilinear System (GCS)</td>
<td>23</td>
</tr>
<tr>
<td>2-2</td>
<td>Orthogonal Curvilinear System (OCS)</td>
<td>28</td>
</tr>
</tbody>
</table>
3 Line Integrals, Surface Integrals, and Volume Integrals 43

3-1 Differential Length, Area, and Volume 43
3-2 Classification of Line Integrals 44
3-3 Classification of Surface Integrals 48
3-4 Classification of Volume Integrals 56

4 Vector Analysis in Space 58

4-1 Symbolic Vector And Symbolic Vector Expressions 58
4-2 Differential Formulas of the Symbolic Expression in the Orthogonal Curvilinear Coordinate System for Gradient, Divergence, and Curl 61
4-3 Invariance of the Differential Operators 65
4-4 Differential Formulas of the Symbolic Expression in the General Curvilinear System 69
4-5 Alternative Definitions of Gradient and Curl 75
4-6 The Method of Gradient 78
4-7 Symbolic Expressions with Two Functions and the Partial Symbolic Vectors 81
4-8 Symbolic Expressions with Double Symbolic Vectors 86
4-9 Generalized Gauss Theorem in Space 91
4-10 Scalar and Vector Green's Theorems 93
4-11 Solenoidal Vector, Irrotational Vector, and Potential Functions 95

5 Vector Analysis on Surface 99

5-1 Surface Symbolic Vector and Symbolic Expression for a Surface 99
5-2 Surface Gradient, Surface Divergence, and Surface Curl 101
5-2-1 Surface Gradient 101
5-2-2 Surface Divergence 102
5-2-3 Surface Curl 103
5-3 Relationship Between the Volume and Surface Symbolic Expressions 104
5-4 Relationship Between Weatherburn's Surface Functions and the Functions Defined in the Method of Symbolic Vector 104
5-5 Generalized Gauss Theorem for a Surface 106
5-6 Surface Symbolic Expressions with a Single Symbolic Vector and Two Functions 111
5-7 Surface Symbolic Expressions with Two Surface Symbolic Vectors and a Single Function 113

6 Vector Analysis of Transport Theorems 116

6-1 Helmholtz Transport Theorem 116
6-2 Maxwell Theorem and Reynolds Transport Theorem 119

7 Dyadic Analysis 121

7-1 Divergence and Curl of Dyadic Functions and Gradient of Vector Functions 121
7-2 Dyadic Integral Theorems 124

8 A Historical Study of Vector Analysis 127

8-1 Introduction 127
8-2 Notations and Operators 129
8-2-1 Past and Present Notations in Vector Analysis 129
8-2-2 Quaternion Analysis 131
8-2-3 Operators 132
8-3 The Pioneer Works of J. Willard Gibbs (1839–1903) 135
8-3-1 Two Pamphlets Printed in 1881 and 1884 135
8-3-2 Divergence and Curl Operators and Their New Notations 138
8-4 Book by Edwin Bidwell Wilson Founded Upon the Lectures of J. Willard Gibbs 141
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-4-1</td>
<td>Gibbs's Lecture Notes</td>
<td>141</td>
</tr>
<tr>
<td>8-4-2</td>
<td>Wilson's Book</td>
<td>141</td>
</tr>
<tr>
<td>8-4-3</td>
<td>The Spread of the Formal Scalar Product (FSP) and Formal Vector Product (FVP)</td>
<td>146</td>
</tr>
<tr>
<td>8-5</td>
<td>(\nabla) in the Hands of Oliver Heaviside (1850–1925)</td>
<td>149</td>
</tr>
<tr>
<td>8-6</td>
<td>Shilov's Formulation of Vector Analysis</td>
<td>151</td>
</tr>
<tr>
<td>8-7</td>
<td>Formulations in Orthogonal Curvilinear Systems</td>
<td>152</td>
</tr>
<tr>
<td>8-7-1</td>
<td>Two Examples from the Book by Moon and Spencer</td>
<td>152</td>
</tr>
<tr>
<td>8-7-2</td>
<td>A Search for the Divergence Operator in Orthogonal Curvilinear Coordinate Systems</td>
<td>154</td>
</tr>
<tr>
<td>8-8</td>
<td>The Use of (\nabla) to Derive Vector Identities</td>
<td>155</td>
</tr>
<tr>
<td>8-9</td>
<td>A Recasting of the Past Failures by the Method of Symbolic Vector</td>
<td>157</td>
</tr>
<tr>
<td>8-9-1</td>
<td>In Retrospect</td>
<td>159</td>
</tr>
</tbody>
</table>

Appendix A

Transformation Between Unit Vectors 161

Appendix B

Vector and Dyadic Identities 165

Appendix C

Integral Theorems 169

Appendix D

Relationships Between Integral Theorems 170

Appendix E

Vector Analysis in the Special Theory of Relativity 174

Appendix F

Comparison of the Nomenclatures and Notations of the Quantities Used in This Book and in the Book by Stratton 181

References 185

Index 189