The Basics of Crystallography and Diffraction

Christopher Hammond

School of Materials, University of Leeds
5 Describing lattice planes and directions in crystals: Miller indices and zone axis symbols 76
 5.1 Introduction 76
 5.2 Indexing lattice directions—zone axis symbols 77
 5.3 Indexing lattice planes—Miller indices 78
 5.4 Miller indices and zone axis symbols in cubic crystals 81
 5.5 Lattice plane spacings, Miller indices and Laue indices 82
 5.6 Zones, zone axes and the zone law, the addition rule 84
 5.7 Indexing in the trigonal and hexagonal systems: Weber symbols and Miller–Bravais indices 85
 5.8 Transforming Miller indices and zone axis symbols 87
 5.9 Transformation matrices for trigonal crystals with rhombohedral lattices 90
Exercises 91

6 The reciprocal lattice 92
 6.1 Introduction 92
 6.2 Reciprocal lattice vectors 92
 6.3 Reciprocal lattice unit cells 94
 6.4 Reciprocal lattice cells for cubic crystals 96
 6.5 Proofs of some geometrical relationships using reciprocal lattice vectors 97
Exercises 100

7 The diffraction of light 101
 7.1 Introduction 101
 7.2 Simple observations on the diffraction of light 103
 7.3 The nature of light: coherence, scattering and interference 108
 7.4 Analysis of the geometry of diffraction patterns from gratings and nets 111
 7.5 The resolving power of optical instruments 118
Exercises 123

8 X-ray diffraction: the contributions of Max von Laue, W. H. and W. L. Bragg and P. P. Ewald 125
 8.1 Introduction 125
 8.2 Laue's analysis of X-ray diffraction: the three Laue equations 126
 8.3 Bragg's analysis of X-ray diffraction: Bragg's law 128
 8.4 Ewald's synthesis: the reflecting sphere construction 130
Exercises 134

9 The diffraction of X-rays and electrons 135
 9.1 Introduction 135
Contents

9.2 The intensities of X-ray diffracted beams: the structure factor equation and its applications 138
9.3 The broadening of diffracted beams: reciprocal lattice points and nodes 145
9.4 Fixed θ, varying λ X-ray techniques: the Laue method 148
9.5 Fixed λ, varying θ X-ray techniques: oscillation, rotation and precession methods 149
9.6 X-ray diffraction from single crystal thin films and multilayers 155
9.7 Electron diffraction in the transmission electron microscope 160
Exercises 167

10 X-ray and electron diffraction of polycrystalline materials 171
10.1 Introduction 171
10.2 The geometrical basis of polycrystalline (powder) X-ray diffraction techniques 172
10.3 Some applications of X-ray and electron diffraction techniques in polycrystalline materials 181
Exercises 188

Appendix 1: Useful components for a crystallography model-building kit and suppliers 191
Appendix 2: Computer programs in crystallography 193
Appendix 3: Biographical notes on crystallographers and scientists mentioned in the text 199
Appendix 4: Some useful crystallographic relationships 214
Appendix 5: A simple introduction to vectors and complex numbers and their use in crystallography 217
Appendix 6: Systematic absences (extinctions) in X-ray diffraction and double diffraction in electron diffraction patterns 224

Answers to exercises 232
Further reading 239
Index 243