Fractals, scaling and growth far from equilibrium

Paul Meakin
Department of Physics, University of Oslo
Contents

Preface xiii

Chapter 1 Pattern Formation Far From Equilibrium 1

1.1 Power Laws and Scaling 4
1.2 The Logistic Map 16
1.3 The Variety of Patterns in Nature 22
1.3.1 Euclidean Patterns 24
1.3.2 Cellular Patterns 27
1.3.3 Spiral and Helix Patterns 31
1.3.4 Labyrinthine Patterns 32
1.3.5 Fluid Convection Patterns 34
1.4 Moving-Boundary Processes 36
1.4.1 Solidification 37
1.4.2 Growth from Solution 39
1.4.3 Solidification of Impure Materials 42
1.4.4 Viscous fingering 44
1.4.5 Pattern Selection 45
1.4.6 Anisotropy and Growth Velocity 46
1.4.7 Laplacian Growth 49
1.4.8 Instabilities 49
1.4.9 Characteristic Lengths 50
1.4.10 Beyond Linear-Stability Analysis 51
1.5 Solution of Interface Equations of Motion 52
Chapter 2
Fractals and Scaling
2.1
Self-Similar Fractals
2.1.1
Statistical Self-Similarity
2.1.2
Lacunarity
2.1.3
Determination of the Fractal Dimensionality
2.1.4
The Devil's Staircase
2.2
Simple Rules
2.3
Finite-Size Effects and Crossovers
2.4
Power Law Distributions
2.5
Scaling
2.5.1
Corrections to Scaling
2.5.2
Multiscaling
2.6
Fractal Trees and Inhomogeneous Fractals
2.7
Self-Affine Fractals
2.7.1
Generation of Self-Affine Surfaces
2.7.2
The Geometry and Growth of Rough Surfaces
2.7.3
Characterization of Self-Affine Rough Surfaces
2.7.4
Finite-Size Effects and Crossovers
2.7.5
Status
2.7.6
Long Range Persistence
2.8
Multifractals
2.9
Universality
2.10
Additional Information

Chapter 3
Growth Models
3.1
Cluster Growth and Cluster Surfaces
3.2
Lattice Animals
3.3
Random Walks
Contents

5.2.7 Directed Percolation 433
5.3 Theoretically Motivated Models 434
5.3.1 Surface Growth with Weak Non-linearity 434
5.3.2 Correlated Noise 439
5.3.3 Non-Gaussian Noise 445
5.3.4 Growth on Rough Substrates 449
5.4 Models with Quenched Disorder 450
5.4.1 Models and Simulation Results 452
5.4.2 Universality Classes 465
5.4.3 Exponent Scaling Relationships 469
5.5 Experiments 475
5.5.1 Fluid–Fluid Displacement Experiments 476
5.5.2 The Growth of Cell Colonies 483
5.5.3 Phase Boundaries and Grain Boundaries 484
5.5.4 Deposition Experiments 486
5.5.5 Erosion Experiments 510
5.5.6 Electrochemical Deposition 516
5.5.7 Corrosion and Oxidation 518
5.5.8 Some General Comments 519
5.6 Thin Film Growth Models 520
5.6.1 The Effects of Surface Diffusion 521
5.6.2 Step Edge Dynamics 546
5.6.3 Anomalous Scaling 547
5.6.4 Porous and Amorphous Films 549
5.6.5 Anisotropic Surfaces 551
5.6.6 The Huygens Principle Model 552
5.7 Oblique Incidence and Shadowing Models 553
5.7.1 Oblique Incidence Ballistic Deposition Models 553
5.7.2 Ballistic Fans 561
5.7.3 Shadowing Models 562
5.8 Cluster Shapes and Faceted Growth 569
5.9 Additional Information 573

Appendix A Instabilities 574
A.1 The Mullins–Sekerka Instability 574
A.2 The Saffman–Taylor Problem 580
Appendix B Multifractals 585
B.1 Generation of Simple Multifractal Sets 586
B.2 Characterization of Multifractal Sets 591
B.3 Applications to Non-Equilibrium Growth 597
B.3.1 Quenched and Annealed Averages 605
B.3.2 Mass Multifractals 606
References 608
Index 663

Color plates are between pp. 242 and 243.