CONTENTS

Preface xvii

 Global Properties and Physics 1
 Exploration Geophysics 3
 Modeling and Inversion of Geophysical Data 4
 Obtaining and Using Mathematical Formulas 5
 Why Study Processes? 6
 Geophysics and the Geologist 8

2: Gross Properties of the Earth 9

 2.1 Plate Tectonics 12
 2.2 The Terrestrial Planets 16
 2.3 Selected Reading 18

3: Geochronology 20

 3.1 Methods Based on Geological Relationships 21
 Fossils and Paleontological Dating 22
 Selection of Organisms for Dating; Global Sea-Level Variations and
 Global Correlation
 Meteorite Impacts and Mass Extinctions 25
 Natural Selection and the Molecular Clock 28
 Crater Counting and the Age of Planetary Surfaces 28
 3.2 Durations of Geological Events 32
 Extrapolating Current Rates 32
 Magnetic Reversals and Global Climatic Cycles 33
 3.3 Dating Methods Based on Radioactive Decay 35
 The Mathematics of Decay 37
 Branched Decay; Decay Series
 Rubidium-Strontium Dating; The Isochron Method 42
4: Gravity 62

4.1 Some Physical Preliminaries 62
Gravitational Potential 64
Some Mathematical and Vector Notation 66
Vectors; Gradient and Slope

4.2 Measurement of Gravity 68
Deflections of the Vertical 68
Gravimetry 70
Methods Based on Potential 71
Line-of-Sight Satellite Data 73

4.3 Gauss's Law and the Gravity Field of Some Simple Bodies 74
Gauss's Law, Poisson’s Equation, and Laplace’s Equation 74
Gravity of a Buried Sphere 77
Two Practice Examples
Gravity from an Infinite Cylindrical Body 80
Attraction of a Planar Body 82
Calculation of Total Anomalous Mass
The Angle or Graticule Formula for Gravity 85

4.4 Expected Gravity and the Reduction of Gravity Data 88
Free-Air Correction 88
Latitude Correction 89
Free-Air Gravity Anomaly 90
Correction for Topographic Masses: Bouguer Anomaly 90
Bouguer and Free-Air Gravity at Sea; Eötvös Correction;
Submarine-Based Measurements; Gravity Reduction in Rugged Regions—Terrain Corrections
Bore-Hole Gravity Surveys 97

4.5 Interpretation and Non-Uniqueness of Gravity Data 98
Non-Uniqueness and a Trivial Solution to all Gravity Anomalies 99
Gravity Interpretation where the Basement Is Exposed 101
Depth and Nature of the Basement Beneath Platform
Sediments 105

4.6 Computational Practicalities 106
Filtering Techniques 106
Second Derivative Method; Upward and Downward Continuation;
Evaluation of Derivatives and Potential
Gravity Anomalies from More Complex Bodies 112
Vertical Cylinder; Vertical Dike; Attraction of Two-Dimensional
Polygons and More on the Angle Formula

4.7 Isostasy and Regional Variations in Gravity 116
Gravity Anomalies and Isostasy 119
Geoid Anomalies Associated with Isostasy 121
Upward Continuation of Geoid; Horizontal Stresses Associated with
Isostasy
Regional Isostatic Compensation and Bending of the
Lithosphere 124
Gravity and Topography of Plate Boundaries 127
Oceanic Trenches; Ridge Axes
Isostatic Anomalies in Rugged Areas 130

4.8 Selected Reading 131

5: Heat Flow and Geothermics 134

5.1 Thermal Conduction and Steady Vertical Heat Flow 134
Thermal Gradient and Heat Flow: Some Examples 136
Geothermal Exploration; Natural Gas Behind Well Casings
Thickness of the Upper Continental Crust 138
Temperature with Continental Crust; Extrapolation to Great Depths

5.2 Thermal Conductivity and the Measurement of Heat Flow 142
Heat Flow and Conductivity Measurements on Land 143
Heat Flow and Conductivity in the Deep Sea 144
Thermal Conductivity at High Temperature and Pressure 145

5.3 Transient Flow of Heat 147
Cooling of Batholiths 147
Error Function Solution
Cooling of a Tabular Dike 151
Cooling of the Oceanic Lithosphere 152
Sedimentation on Oceanic Crust

5.4 Convective Flow of Heat 156
Upward Flow of Ground Water 157
Circulation of Ground Water 159

5.5 Simple Applications of the Heat Flow Equation 160
The Heat Flow Equation 160
| The Three-Dimensional Heat Flow Equation; Dimensional Evaluation of the Heat Flow Equation |
| Combined Analysis of Steady-State Heat Flow and Gravity | 164 |
| Heat Flow and Temperature of Minor Planets | 167 |

5.6 Thermal Convection and the Thermal History of the Earth | 168 |
Heat Budget of the Earth's Interior	169
A Simple Model for Convection in the Earth	170
Thermal History Calculations	174
Application of Parameterized Convection to Other Terrestrial Planets	177
Convective Instability	180
Adiabatic Gradient, Thermodynamics, and Shear-Strain Heating	182
Thermodynamic Work and Convection	

5.7 Mathematical Solutions to the Heat Flow Equation | 187 |
| Diurnal and Annual Heating of the Ground | 187 |
| Temperatures in the Continent Lithosphere: An Application of Fourier Series | 189 |
| Other Applications of Fourier Series and Error Functions |
| Folded Metamorphic Isograds | 195 |
| Chilled Zones at the Edge of Intrusions: An Application of Numerical Methods | 197 |
| Steady-State Heat Flow |

5.8 Selected Reading | 201 |

6: Magnetism | 204 |

6.1 Physical Discussion of Magnetism | 205 |
| Induced and Remanent Magnetism | 206 |
| Electromagnetics and Induced Magnetism |
| Single Magnetic Dipole | 208 |
| Potential of Single Magnetic Dipole; Magnetic Field of Single Magnetic Dipole; Earth's Main Field; A Useful Local Coordinate System; Scale Independence of Magnetic Anomalies |
| Surface Magnetic Charges | 213 |
| Relationships Between Magnetic and Gravity Formulas | 215 |

6.2 Measurement of Magnetic Anomalies | 217 |
| Vertical Magnetometers | 218 |
| Total Field Magnetometers | 219 |

6.3 Magnetic Anomalies from Simple Bodies | 220 |
| Magnetic Anomaly of a Sphere | 221 |
| Horizontal Cylindrical Bodies | 223 |
| Vector Representation of Cylinder |

6.4 Magnetic Lineations on the Sea Floor: An Example | 224 |
| Magnetic Anomalies: Some Simple Cases | 226 |
CONTENTS XI

Magnetic Lineations at the Pole; Magnetic Lineations on North-South Striking Ridges; Magnetic Lineations on an East-West Striking Ridge at Equator; Magnetic Lineations on Transported Oceanic Crust

Practicalities of Modeling Marine Magnetic Anomalies 234
Weak Anomalies Near Equator on North-South Striking Ridge; More Complicated Cases; Actual Magnetic Geometry; Quiet Zones

Computational Methods 238
Vector Formulas for Magnetic Lineations; Polygon Formula and Computational Practicalities for Magnetics

6.5 Interpretation of Magnetic Anomalies in Continental Areas 240
Magnetic Surveys for Petroleum 242
Magnetic Anomalies in Mineral Exploration and Field Geology 244
Regional and Residual Anomalies 246
Second Derivative Method; Reduction to the Pole; Magnetic Gradiometer

6.6 Selected Reading 252

7: Paleomagnetism 253

7.1 Remanent Magnetism of Rocks 253
Magnetism of Minerals 254
Acquisition of Remanent Magnetism by Rocks 257
Laboratory Tests for Magnetic Stability 260

7.2 Paleomagnetism and Field Geology 267
Secular Variation and the Origin of the Main Field 268
Magnetic Reversals 270
Field Relationship Tests 272
Partial Oriented Samples; Other Applications of Paleomagnetism

7.3 Modern Plate Motions and Plate Kinematics 276
Kinematics on a Plane and Velocity Space 276
Three Plates; Stability of Triple Junctions
Triple Junctions on Pacific Margin: An Application 284

7.4 Plates on a Sphere 292
Vector Representation of Plate Rotation 293
Determination of Global Motions 296
Absolute Plate Motions 297
“Additional” Applications of Vector Formalism 299
Surficial Area Produced or Subducted at Plate Boundary; Location of Virtual Geomagnetic Pole

7.5 Plate Motions over Geological Time 300
Continental Reconstructions 300
Evolution of the Arctic: An Example 302
Tectonostratigraphic Terranes 305
Terranes of the San Francisco Bay Region; Wrangellia
Biological Indicators of Plate Motion 309
 Need for Biological Dispersal; Biota on Oceanic Islands: The Barriers
to Dispersal; Continental Break-Up and Collision in the Fossil
 Record
Finite Plate Rotations 312
 Variation of Plate Poles with Time; Geometrical Reconstruction
 Methods; Finite Rotation Matrices

7.6 Selected Reading 317

8: Travel Time Seismology 319

8.1 Seismic Waves and Rays 321
 Snell's Law and the Behavior of Waves at Interfaces 323
 Continuous Velocity Variation 326
 Critical Angle and Total Reflection 328
 Snell's Law for a Sphere 329
 Nomenclature of Seismic Wave Phase 330
 Limitations of Ray Theory 331

8.2 Seismic Reflection 333
 Layouts, Gathers, and Sections 337
 Zero-Offset Reflection Sections and Migration 338
 Common Mid-Point Gathers and Stacking 350
 Common Shot and Geophone Gathers 354
 Multiple Reflections and Statics 356
 Multiple Reflections; Variable Gain; Statics
 Processing and Interpretation in Practice 362

8.3 Locating Earthquakes 363
 Body Wave Locations 363
 P-Wave Solutions; Relocation Methods
 Focal Depths 366
 Location of Earthquakes in Subduction Zones 368
 Depth of Slab Penetration
 Seismic Ray Tracing and Seismic Tomography 371
 Basis of Computational Methods; Seismic Tomography

8.4 Selected Reading 375

9: Seismic Waves and Other Mechanical Topics 377

9.1 Stress, Strain, Rheology, and Equations of Motion 378
 Stress in Two and Three Dimensions 378
 Traction and the Stress Tensor; Principal Directions and Coordinate
 Transformation
 Strain in One, Two, and Three Dimensions 383
 Infinitesimal Strain and Displacement in One Dimension; Finite Strain
in One Dimension; Separation of Strain and Rigid Rotation;
Two Simple Cases of Shear Strain and Rotation

Elasticity 387
The Spring, An Example of Linear Elasticity; Elasticity Tensor; Isotropic Medium; Some Simple Examples
Other Rheologies of Earth Materials 391
Linear Viscosity; Viscoelastic and Plastic Rheologies
Equation of Motion 393
Equation of Motion in Terms of Stress; Equation for Elastic Solid;
Equation of Motion in a Viscous Fluid

9.2 Slow Viscous Flow with Examples Relating to Magma Transport 397
Flow Through Dikes 399
Application to Dike Intrusion; Application to Landslides, Lava Flows, Glaciers, and Accretionary Wedges
Porous Flow of Melt 402
Compaction of the Matrix 405
Compaction Length; Compaction of Aquifers and Mush
Settling of Crystals 409
When Is Inertia Important? 410

9.3 The Earthquake Source and Tectonics 412
P-Wave Focal Mechanisms 412
Some Difficulties with P-Wave Mechanisms; Tabulation of Mechanism Solutions
Quantification of the Earthquake Source: Centroid Moment Tensors 417
Double Couple Mechanism; Moment Representation of the Source;
Moment Tensor and Fault Slip; Relation to Ground Motion;
Interpretation of Moment Tensor Solutions
Synthetic Seismograms 421
Other Methods of Obtaining Source Mechanisms 422
Shear Wave Focal Mechanisms; Surface Wave Mechanisms
Quantification of Earthquake Size 425
Felt Intensity; Magnitude; Seismic Moment; Stress Drop and Energy Release
Subduction Zones: An Example of the Use of Focal Mechanisms and Earthquake Locations 430
Thrust Events; Double Seismic Zone

9.4 The Earthquake Cycle and Earthquake Prediction 435
Empirical Prediction of Earthquakes 435
Prediction Compared with Risk Assessment; Seismic Gaps; Foreshocks and Aftershocks; Animal Behavior
Monitoring Stress and Strain 439
Geodetic Surveying Methods; Measurement of Stress in Bore-Holes;
Stress Orientation from Earthquake Mechanisms
Mechanics of Rock Failure 442
Frictional Failure; Angle of Slip in Nature Rocks: Mohr’s Circle; Effect
of Pore Pressure on Failure; Fault Behavior at Depth; Rate and State Dependent Friction

9.5 Seismic Wave Equation and Plane Waves 449

Acoustic Waves 450
Waves in Three Dimensions; Direction of Particle Motion
P and S Waves in a Solid 452
Wave Equations in a Solid; Direction of Propagation and Wave Motion
Reflection and Refraction of Plane Waves at Interfaces 454
Boundary Conditions for Reflected and Transmitted Amplitudes; Reflection and Transmission of SH Waves; P and SV Waves at an Interface
Vertically Incident Seismic Waves: An Example of Signal Processing 459
Expected Seismogram from Earth Structure Alone; Finite Source Functions: Convolution and Deconvolution; Attenuation of Seismic Waves; Seismic Instrument Response; Reading Analog Seismograms

9.6 Guided and Standing Waves 467
Standing and Guided Acoustic Waves 468
Guided Acoustic Waves; Fourier Solution for Point Source and Group Velocity; Near Field Non-Propagating Waves
Seismic Refraction 474
Travel-Time Refraction; Theory of Refracted Waves; Seismic Refraction in Practice and Oceanic Crustal Structure
Surface Waves and Free Oscillations 478
Mathematical Representation of Love Waves and Toroidal Free Oscillations; Mathematical Representation of Spheroidal Free Oscillations and Rayleigh Waves; Free Oscillations and Lateral Heterogeneity

9.7 Selected Reading 483

10: Global Gravity and Geodynamics 487

10.1 Global Gravity 487
Laplace’s Equation on a Sphere and Spherical Harmonics 487
Geoid from a Sheet Mass 490
Series Expression for Gravitational Potential; Application of Gauss’s Law
Self-Gravity and Isostasy on a Sphere 493
Self-Gravity Within a Homogeneous Sphere; Computation Using Massive Shells; Lithospheric Isostasy; Application to Mars; Application to Other Planets

10.2 Moment of Inertia and the Internal Structure of the Earth 501
Moments of Inertia and Relationship to Second Harmonic of the Geoid 501
Angular Momentum and the Dynamics of a Rotating Solid; Moment of Inertia Tensor; Relation of Moment of Inertia to Geoid; Determination of Mean Moment of Inertia
Relation to Internal Composition of the Earth 504
Application to Earth; Composition of the Core

10.3 Glacial Rebound 506
Half-Space Solution 506
Analysis of Rebound Data 510
Global Loads and Sea-Level Variations
More Sophisticated Methods for Analysis of Rebound Data 513
Internal Density Interfaces and Self-Gravity; Moment of Inertia and Rotation Rate; Lithospheric Flexure and the Analysis of Long-Wavelength Rebound; Nonlinear and Transient Rheologies

10.4 The Rotational Ellipticity of the Earth 520
Linear External Theory 521
Potential Associated with Rotation; Potential Rotating with the Earth; Equipotential Surface in Terms of Harmonic Coefficients
Internal Theory 525
Geoid Anomaly from Sheet Mass; Hydrostatic Surface Shape; Calculation of Hydrostatic Ellipticity
Deviation of the Earth from Hydrostaticity 527
Nonhydrostatic Moments of Inertia; Causes of Nonhydrostaticity and Relation to the Chandler Wobble; Hydrostatic Ellipticity of Mars

10.5 Selected Reading 532

11: Origin of the Planets 534

11.1 The Solar Nebula 534
Orbital Mechanics of Gas 535
Gas Drag on Solid Bodies 537
Expulsion of the Solar Nebula 539
Thickness of the Solar Nebula 539
Self-Gravity and Gas Collapse 540
Collapse of Dust 542
High Density of Mercury 544

11.2 Accretion of the Terrestrial Planets 545
Gravitational and Geometrical Capture 546
Growth of Planets in Solar Orbit 548
Small Sizes of Mars and the Asteroids; Sources of Comets and Meteorites; Nongravitational Effects of Very Small Objects
Thermal Aspects of Accretion 551
Moderate-Size Body Impact; Atmospheric Greenhouse During Accretion; Large Body Impacts
XVI CONTENTS

11.3 Origin of the Earth's Moon 554
 Tides on the Moon and the Earth 555
 Roche's Limit; Tidal Dissipation
 Theories for Lunar Origin 560
 Intact Capture of the Moon; Escape of the Moon from the Earth;
 Impact of Large Body with the Earth

11.4 Selected Reading 563

Index 565