# Table of Contents

Foreword
Preface
About the Authors

## Chapter 1  Basic Concepts  
- 1.1 A Historical Perspective  
- 1.2 Velocity and Acceleration  
  - Problems  
  - Selected Solutions  

## Chapter 2  Celestial Relationships  
- 2.1 Coordinate Systems  
- 2.2 Time Systems  
  - References  

## Chapter 3  Keplerian Orbits  
- 3.1 Newton's Universal Law of Gravitation  
- 3.2 General and Restricted Two Body Problem  
- 3.3 Conservation of Mechanical Energy  
- 3.4 Conservation of Angular Momentum  
- 3.5 Orbital Parameters of a Satellite  
- 3.6 Orbital Elements  
  - References  
  - Problems  
  - Selected Solutions  

## Chapter 4  Position and Velocity as a Function of Time  
- 4.1 General Relationships  
- 4.2 Solving Kepler's Equation  
- 4.3 A Universal Approach  
- 4.4 Expressions with \( f \) and \( g \)  
- 4.5 Summary of the Universal Approach  
- 4.6 The Classical Element Set  
- 4.7 The Rectangular Coordinate System  
- 4.8 Modified Classical to Cartesian Transformation  
- 4.9 Rectangular to Modified Classical Elements Transformation  
- 4.10 The Spherical (ADBARV) Coordinate System
<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Introduction to Orbit Perturbations</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1</td>
<td>A General Overview of Orbit Perturbations</td>
<td>185</td>
</tr>
<tr>
<td>8 2</td>
<td>Earth Gravity Harmonics</td>
<td>186</td>
</tr>
<tr>
<td>8 3</td>
<td>Lunisolar Gravitational Attractions</td>
<td>187</td>
</tr>
<tr>
<td>8 4</td>
<td>Radiation Pressure Effects</td>
<td>188</td>
</tr>
<tr>
<td>8 5</td>
<td>Atmospheric Drag</td>
<td>189</td>
</tr>
<tr>
<td>8 6</td>
<td>Tidal Friction Effects and Mutual Gravitational Attraction</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Orbit Perturbations Mathematical Foundations</th>
<th>193</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 1</td>
<td>Equations of Motion</td>
<td>193</td>
</tr>
<tr>
<td>9 2</td>
<td>Methods of Solution</td>
<td>195</td>
</tr>
<tr>
<td>9 3</td>
<td>Potential Theory</td>
<td>202</td>
</tr>
<tr>
<td>9 4</td>
<td>More Definitions of Gravity Harmonics</td>
<td>204</td>
</tr>
<tr>
<td>9 5</td>
<td>Perturbations Due to Oblateness ($J_2$)</td>
<td>207</td>
</tr>
<tr>
<td>9 6</td>
<td>Integration of the Equations of Variation</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Applications of Orbit Perturbations</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 1</td>
<td>Earth's Oblateness ($J_2$) Effects</td>
<td>215</td>
</tr>
<tr>
<td>10 2</td>
<td>Critical Inclination</td>
<td>217</td>
</tr>
<tr>
<td>10 3</td>
<td>Sun Synchronous Orbits</td>
<td>218</td>
</tr>
<tr>
<td>10 4</td>
<td>$J_3$ Effects and Frozen Orbits</td>
<td>220</td>
</tr>
<tr>
<td>10 5</td>
<td>Earth's Triaxiality Effects and East West Stationkeeping</td>
<td>221</td>
</tr>
<tr>
<td>10 6</td>
<td>Third Body Perturbations and North/South Stationkeeping</td>
<td>222</td>
</tr>
<tr>
<td>10 7</td>
<td>Solar Radiation Pressure Effects</td>
<td>223</td>
</tr>
<tr>
<td>10 8</td>
<td>Atmospheric Drag Effects</td>
<td>227</td>
</tr>
<tr>
<td>10 9</td>
<td>Tidal Friction Effects</td>
<td>230</td>
</tr>
<tr>
<td>10 10</td>
<td>Long Term Inclination Variations</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Selected Solutions</td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Orbital Systems</th>
<th>241</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 1</td>
<td>Launch Window Considerations</td>
<td>241</td>
</tr>
<tr>
<td>11 2</td>
<td>Time of Event Occurrence</td>
<td>253</td>
</tr>
<tr>
<td>11 3</td>
<td>Ground Trace Considerations</td>
<td>254</td>
</tr>
<tr>
<td>11 4</td>
<td>Highly Eccentric Critically Inclined $Q = 2$ Orbits (Molniya)</td>
<td>256</td>
</tr>
<tr>
<td>Chapter 12: Lunar and Interplanetary Trajectories</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>12.2 Historical Background</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>12.3 Important Concepts</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>12.4 Lunar Trajectories</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>12.5 Analytical Approximations</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>12.6 Three Dimensional Trajectories</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>12.7 Interplanetary Trajectories</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>Selected Solutions</td>
<td>295</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13: Space Debris</th>
<th>297</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>297</td>
</tr>
<tr>
<td>13.2 Space Debris Environment Low Earth Orbit</td>
<td>298</td>
</tr>
<tr>
<td>13.3 Debris Measurements</td>
<td>299</td>
</tr>
<tr>
<td>13.4 Space Debris Environment Geosynchronous Orbit</td>
<td>301</td>
</tr>
<tr>
<td>13.5 Spatial Density and Collision Hazard</td>
<td>307</td>
</tr>
<tr>
<td>13.6 Collision Hazards Associated with Orbit Operations</td>
<td>310</td>
</tr>
<tr>
<td>13.7 Collision Hazard Assessment Methods</td>
<td>311</td>
</tr>
<tr>
<td>13.8 Examples Collision Hazards in LEO</td>
<td>313</td>
</tr>
<tr>
<td>13.9 Spacecraft Survivability</td>
<td>317</td>
</tr>
<tr>
<td>13.10 Impact on Space Systems Design Protection</td>
<td>318</td>
</tr>
<tr>
<td>13.11 Collision Avoidance</td>
<td>319</td>
</tr>
<tr>
<td>13.12 Short and Long Term Debris Evolution Modeling</td>
<td>321</td>
</tr>
<tr>
<td>13.13 Determination of Breakup Causes</td>
<td>321</td>
</tr>
<tr>
<td>13.14 Spacecraft Breakup Modeling</td>
<td>322</td>
</tr>
<tr>
<td>13.15 Debris Cloud Evolution Modeling</td>
<td>322</td>
</tr>
<tr>
<td>13.16 Lifetime of Nontrackable Debris</td>
<td>322</td>
</tr>
<tr>
<td>13.17 Methods of Debris Control</td>
<td>323</td>
</tr>
<tr>
<td>References</td>
<td>324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14: Optimal Low Thrust Orbit Transfer</th>
<th>327</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>327</td>
</tr>
<tr>
<td>14.2 The Edelbaum Low Thrust Orbit Transfer Problem</td>
<td>327</td>
</tr>
<tr>
<td>14.3 The Full Six State Formulation Using Nonsingular Equinoctial Orbit Elements</td>
<td>346</td>
</tr>
<tr>
<td>14.4 Orbit Transfer with Continuous Constant Acceleration</td>
<td>364</td>
</tr>
<tr>
<td>14.5 Orbit Transfer with Variable Specific Impulse</td>
<td>381</td>
</tr>
<tr>
<td>Appendix The Partials of the $M$ Matrix</td>
<td>391</td>
</tr>
<tr>
<td>References</td>
<td>401</td>
</tr>
</tbody>
</table>
Chapter 15  **Orbital Coverage**  403
15 1  Coverage from a Single Satellite  403
15 2  Design of Optimal Satellite Constellations for Continuous Zonal and Global Coverage  421
15 3  Considerations in Selecting Satellite Constellations  431
15 4  Nontypical Coverage Patterns  434
References  438
Problems  440
Selected Solutions  442

Index  445