BIODIVERSITY IN LAND–INLAND WATER ECOTONES

Edited by
Jean-Bernard Lachavanne and Raphaëlle Juge
University of Geneva
Switzerland

PUBLISHED BY
UNESCO
PARIS
AND
The Parthenon Publishing Group
International Publishers in Science, Technology & Education
CONTENTS

PREFACE

v

LIST OF CONTRIBUTORS

xvii

1. WHY STUDY BIODIVERSITY IN LAND–INLAND WATER ECOTONES?

Jean-Bernard Lachavanne

- The erosion of biodiversity — a major problem facing humanity
 - A worldwide concern
 - The challenges to humanity
 - A difficult challenge to take up
- About land–inland water ecotones
 - What is a land–inland water ecotone?
 - Ecotone — an ambiguous concept
 - Toward a hierarchical application of the ecotone concept
- Importance of land–inland water ecotones for the conservation of biodiversity
 - Biodiversity and land–inland water ecotones
 - Threats to the biodiversity of land–inland water ecotones
- The land–inland water ecotone: a life-sized laboratory for studying the patterns and regulating factors of biodiversity
 - Land–inland water ecotones have to receive more attention in the future
 - Key biodiversity-related questions
- Objectives of this book
- Acknowledgements
- References

19

22

25

25

27

30

33

33
2. DYNAMICS OF DIVERSITY AND ITS EXPRESSION OVER GRADIENTS AND BOUNDARIES

Ramon Margalef

<table>
<thead>
<tr>
<th>Introduction</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>A dynamic model</td>
<td>48</td>
</tr>
<tr>
<td>The play between two feedback loops</td>
<td>49</td>
</tr>
<tr>
<td>Time-dependence of diversity, as expressed in succession</td>
<td>50</td>
</tr>
<tr>
<td>Diversity and space</td>
<td>51</td>
</tr>
<tr>
<td>Boundaries</td>
<td>52</td>
</tr>
<tr>
<td>Question of names</td>
<td>54</td>
</tr>
<tr>
<td>Diversity and biodiversity, the examples of streams and plankton</td>
<td>54</td>
</tr>
<tr>
<td>References</td>
<td>58</td>
</tr>
</tbody>
</table>

3. HABITAT COMPLEXITY IN LAND–INLAND WATER ECOTONES

Ewa Pieczyńska and Maciej Zalewski

<table>
<thead>
<tr>
<th>Introduction</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size and physical characteristics of streamside and lakeside ecotones</td>
<td>61</td>
</tr>
<tr>
<td>Biological aspects of ecotone heterogeneity</td>
<td>65</td>
</tr>
<tr>
<td>Ecotones and feedback processes regulating ecosystem dynamics</td>
<td>68</td>
</tr>
<tr>
<td>Human influences, management, restoration</td>
<td>71</td>
</tr>
<tr>
<td>Anthropogenic changes to ecotones</td>
<td>71</td>
</tr>
<tr>
<td>Filtering function of ecotones – management</td>
<td>72</td>
</tr>
<tr>
<td>Conclusions</td>
<td>74</td>
</tr>
<tr>
<td>References</td>
<td>75</td>
</tr>
</tbody>
</table>

4. MICROBIAL DIVERSITY AND FUNCTIONS IN LAND–INLAND WATER ECOTONES

Michel Aragno and Blanka Ulehlova

<table>
<thead>
<tr>
<th>Land–inland water ecotones generate unique microbial habitats</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling, biomass and biodiversity evaluations</td>
<td>83</td>
</tr>
<tr>
<td>Sampling</td>
<td>83</td>
</tr>
<tr>
<td>Biomass measurement</td>
<td>83</td>
</tr>
<tr>
<td>Microbial biodiversity</td>
<td>84</td>
</tr>
<tr>
<td>Bacterial functions associated with land–inland water ecotone microenvironments</td>
<td>86</td>
</tr>
<tr>
<td>Primary production: phototrophic bacteria</td>
<td>87</td>
</tr>
<tr>
<td>Chemotrophic metabolism</td>
<td>87</td>
</tr>
<tr>
<td>Other functions to be considered</td>
<td>92</td>
</tr>
</tbody>
</table>
Contents

Relationship of bacteria with other organisms in the biocoenoses 94

Considerations and hypotheses on the microbial ecology of some microecotones (gradients, transitions, interfaces) existing in land–inland water ecotones

- Carbon flux and related functions associated with litter decomposition in submersed conditions 96
- Rhizospheric environment of aquatic plants 98
- The possible consequences of a changing water table 102

The role of microorganisms as depolluting agents 103

Conclusions 104

Acknowledgements 105

References 106

5. PATTERNS AND REGULATION OF PLANT DIVERSITY IN LACUSTRINE ECOTONES

Raphaëlle Juge and Jean-Bernard Lachavanne

Introduction 109

Vegetation: a key to ecotone complexity 110

Patterns of plant diversity in the circumlacustrine ecotone 111

- Criteria for determination of plant diversity 111
- Types of diversity 112
- Zonation and patchiness of vegetation in ecotones 115

Regulation of plant diversity in ecotones 119

- Modes of regulation of plant diversity related specifically to land–water ecotones 120

Roles of plant diversity 126

Conclusions 127

Acknowledgements 129

References 129

6. INVERTEBRATE BIODIVERSITY IN LAND–INLAND WATER ECOTONAL HABITATS

Jean Giudicelli and Michel Bournaud

Introduction 143

Evaluation of biodiversity and representativity of results 143

- Sampling macroinvertebrates in ecotonal habitats 143
- Evaluation of biodiversity 144

Illustration of ecotonal biodiversity in land–stream boundaries 144

Role of terrestrial–aquatic boundary characteristics in influencing biodiversity

- (1) The intra-ecotonal complexity and heterogeneity 149
Biodiversity in land–inland water ecotones

(2) The use of terrestrial–aquatic ecotonal systems by invertebrates 150

Taxonomic richness and specificity in the ecotonal communities 151

Conclusions 155

References 157

7. AMPHIBIAN DIVERSITY AND LAND–WATER ECOTONES

Pierre Joly and Alain Morand

Introduction 161

Typology of the ecotones used by amphibians 162

Reasons for the presence of amphibians in ecotonal habitats 163

Temperature 163

Larval diet and ecotones 164

Ecotones and the availability of refuges against predation 165

Ecological constraints on the use of ecotonal habitats as breeding sites 165

Fragmentation and connectivity 165

Disturbance through hydrological processes 166

Production and fluxes 167

Adaptation of amphibians to the ecological constraints of littoral ecotones 168

Adaptation to the seasonality of feeding resources 168

Adaptation to the unpredictability and transience of suitable habitats 169

Adaptation to foraging in ecotones 170

Adaptations of the amphibian larvae to escape fish predation 171

Demographic adaptation to the fragmentation of ecotones 172

Impact of human activities and guidelines for ecotone management 173

Fragmentation and isolation of ecotonal habitats 173

Quality of ecotonal habitats 174

Guidelines for the restoration of ecotonal habitats suitable for amphibian breeding 174

Conclusions 175

Acknowledgements 176

References 176

8. FISH DIVERSITY AND ECOTONAL HABITAT

Maciej Zalewski

Introduction 183

Increase of fish diversity with shift from abiotic to biotic mode of ecosystem regulation 184

The change of biodiversity as an effect of the ecosystem eutrophication 187
Contents

Shoreline ecotones – fish as regulators of community dynamics and patterns of energy flow 189
The role of the land–water ecotones at the river in agricultural catchments 193
Stocking as a method of compensation for loss of ecotonal habitats 194
Conclusions 195
Acknowledgements 199
References 199

9. BIRD DIVERSITY IN ECOTONAL HABITATS 205
Kazimierz A. Dobrowolski
River ecotones 209
Lake ecotones 217
References 220

10. MAMMAL DIVERSITY IN INLAND WATER ECOTONE HABITATS 223
Rüdiger Schröpfer
Introduction 223
The bank as a typical ecotone 223
The diversity of phenotype of semiaquatic mammals 223
Diversity of form 224
Referring to ecotones in general 224
Diversity of size 224
Diversity of strategies 225
The ecotone situation for mammals 228
Acknowledgements 229
References 230

11. ECOTONAL BIODIVERSITY AND SUSTAINABILITY IN UNIQUE TROPICAL LANDSCAPES 233
Heath J. Carney
Introduction 233
Survey, sampling and monitoring of tropical ecotones 235
Ecotonal biodiversity and sustainability 242
Conclusions 246
Acknowledgements 246
References 247
12. SCIENTIFIC BASIS FOR CONSERVING DIVERSITY ALONG RIVER MARGINS

Geoff Petts

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>249</td>
</tr>
<tr>
<td>The character of river margins</td>
<td>249</td>
</tr>
<tr>
<td>Rationale for managing river margins</td>
<td>253</td>
</tr>
<tr>
<td>The case for restoration</td>
<td>254</td>
</tr>
<tr>
<td>The scientific basis of restoring river margin ecosystems</td>
<td>256</td>
</tr>
<tr>
<td>An integrated approach</td>
<td>256</td>
</tr>
<tr>
<td>The fluvial hydrosystem perspective</td>
<td>258</td>
</tr>
<tr>
<td>Principles for ecologically-sensitive river management</td>
<td>260</td>
</tr>
<tr>
<td>The river margin as an ecotone</td>
<td>261</td>
</tr>
<tr>
<td>Management perspective</td>
<td>265</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>266</td>
</tr>
<tr>
<td>References</td>
<td>266</td>
</tr>
</tbody>
</table>

13. BIODIVERSITY: A REVIEW OF THE SCIENTIFIC ISSUES

Stephen C. Stearns

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>269</td>
</tr>
<tr>
<td>What politicians need from biodiversity research</td>
<td>270</td>
</tr>
<tr>
<td>Where basic research is needed</td>
<td>272</td>
</tr>
<tr>
<td>Connecting genetic variation and ecological processes: within species and among species within communities</td>
<td>272</td>
</tr>
<tr>
<td>Why are some communities and ecosystems more diverse than others?</td>
<td>273</td>
</tr>
<tr>
<td>How many species are there and what can they tell us?</td>
<td>274</td>
</tr>
<tr>
<td>Conclusions</td>
<td>274</td>
</tr>
<tr>
<td>References</td>
<td>275</td>
</tr>
</tbody>
</table>

14. LAND–INLAND WATER ECOTONES AS TRANSITIONAL SYSTEMS OF PARTICULARLY HIGH BIODIVERSITY: TOWARDS A SYNTHESIS

Jean-Bernard Lachavanne and Raphaëlle Juge

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>The ecotone concept as applied to the transitional zones</td>
<td>277</td>
</tr>
<tr>
<td>between terrestrial and aquatic ecosystems: the necessity of an agreement</td>
<td>279</td>
</tr>
<tr>
<td>Biodiversity analysed in an ecotonal context</td>
<td>279</td>
</tr>
<tr>
<td>Ecotones between terrestrial and aquatic ecosystems are generally characterized by high biodiversity</td>
<td>281</td>
</tr>
<tr>
<td>Biodiversity in land–inland water ecotones also depends on characteristics of related ecosystems</td>
<td>282</td>
</tr>
</tbody>
</table>