ON THE ROLE OF DIVISION, JORDAN AND RELATED ALGEBRAS IN PARTICLE PHYSICS

Feza Gürsey
Department of Physics, Yale University, USA

Chia-Hsiung Tze
Department of Physics, Virginia Tech, USA
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Quaternions</td>
<td>7</td>
</tr>
<tr>
<td>2.a. Algebraic Structures</td>
<td>7</td>
</tr>
<tr>
<td>2.a.1. Basic properties and identities</td>
<td>7</td>
</tr>
<tr>
<td>2.a.2. Covariant O(4) and (anti-) self-dual tensors</td>
<td>18</td>
</tr>
<tr>
<td>2.a.3. Clifford and Grassmann algebras</td>
<td>24</td>
</tr>
<tr>
<td>2.a.4. Complex and hermitian quaternions</td>
<td>25</td>
</tr>
<tr>
<td>2.a.5. Symplectic Lie algebras and Quaternionic Jordan algebras</td>
<td>31</td>
</tr>
<tr>
<td>2.b. Jordan Formulation, H-Hilbert Spaces and Groups</td>
<td>36</td>
</tr>
<tr>
<td>2.b.1. The Jordan form of quantum mechanics</td>
<td>37</td>
</tr>
<tr>
<td>2.b.2. H-Hilbert spaces and symplectic groups</td>
<td>48</td>
</tr>
<tr>
<td>2.c. Vector Products, Parallelisms and Quaternionic Manifolds</td>
<td>51</td>
</tr>
<tr>
<td>2.c.1. Vector products on manifolds</td>
<td>51</td>
</tr>
<tr>
<td>2.c.2. Absolute parallelisms on Lie groups and S^3</td>
<td>52</td>
</tr>
<tr>
<td>2.c.3. Quaternionic, H-Kählerian structures</td>
<td>58</td>
</tr>
<tr>
<td>2.d. Quaternionic Function Theory</td>
<td>63</td>
</tr>
<tr>
<td>2.d.1. Fueter's quaternion analysis</td>
<td>63</td>
</tr>
<tr>
<td>2.d.2. H-holomorphic functions from C-analytic functions</td>
<td>67</td>
</tr>
<tr>
<td>2.d.3. Fourfold periodic Weierstrassian functions</td>
<td>80</td>
</tr>
<tr>
<td>2.d.4. Recent developments of Fueter's theory: O(4) covariance, conformal and quasi-conformal structures</td>
<td>85</td>
</tr>
<tr>
<td>2.e. Arithmetics of Quaternions</td>
<td>135</td>
</tr>
</tbody>
</table>
2.f. Selected Physical Applications

2.f.1. Quaternionic quantum mechanics and all that
2.f.2. Maxwell equations and Dirac-Kähler equations
2.f.3. Self-duality in Yang-Mills and gravitational instantons
2.f.4. H-analyticity and Milne's regraduation of clocks

2.g. Historical Notes

2.g.1. Birth and high expectations (1843 - 1873)
2.g.2. Their demise from physics and a haven in mathematics (1873 - 1900)
2.g.3. Complex quaternions in relativity (1911-1926)
2.g.4. A deeper role in quantum mechanics, function theory (1927 - 1950)
2.g.5. New hopes and disappointments (1950 - 1975)
2.g.6. Comeback in Euclidean QFT (1978 - Present)

3. Octonions

3.a. Algebraic Structures

3.a.1. Basic properties, Moufang and other identities
3.a.2. O(8) covariant tensors
3.a.3. Exceptional Grassmann algebra

3.b. Octonionic Hilbert Spaces, Exceptional Groups and Algebras

3.b.1. Octonionic spaces and automorphism groups
3.b.2. Exceptional algebras, groups and cosets
 3.b.2.1. Octonionic representation of SO(8), SO(7) and G₂
 3.b.2.2. Tits' construction of the Magic Square
 3.b.2.3. The color-flavor construction of the exceptional groups
 3.b.2.4. The group F₄
 3.b.2.5. The group E₆
3.c. Vector Products, Parallelisms on S^7 and Octonionic Manifolds

3.c.1. Vectors products in \mathbb{R}^8
3.c.2. Absolute parallelisms on S^7
3.c.3. The almost complex structure on S^6
3.c.4. The Moufang Plane
3.c.5. Spaces with G_2 and Spin(7) holonomy, exceptional calibrated geometries

3.d. Octonionic Function Theory

3.e. Arithmetics of Octonions

3.f. Some Physical Applications

3.f.1. Exceptional quantum mechanical spaces as charge spaces and unified theories
3.f.2. S^7 and compactification of $D=11$ supergravity
3.f.3. $D=8$ self-dualities and octonionic instantons
3.f.4. Octonionic supersymmetry in hadron physics

3.g. Historical Notes

3.g.1. Early life of octonions and division algebras (1843 - 1933)
3.g.2. Octonionic quantum mechanics, birth of Jordan algebras (1933 - 1934)
3.g.3. Exceptional life in mathematics (1950 - 1967)
3.g.4. New attempts at applications and exceptional unified theories (1960 - 1978)
3.g.5. Extended supergravities, strings and membranes (1978 - Present)

4. Division, Jordan Algebras and Extended Objects

4.a. Dyson's 3-fold Way: Time Reversal and Berry Phases
4.b. Essential Hopf Fibrations and $D\geq3$ Anyonic Phenomena

4.b.1. Hopf 's construction and division algebras
4.b.2. The many faces of the Hopf invariant
4.b.3. Twists, writhes of solitons and Adams' theorem
4.b.4. Division algebra σ-models with a Hopf term
4.c. The Super-Poincaré Group and Super-extended Objects 379

4.c.1. Spinors and super-vectors revisited 379
4.c.2. Vectors as Jordan matrices, Lorentz and Poincaré groups in critical dimensions 386
4.c.3. Super-Poincaré groups and their representations by matrices over K 393
4.c.4. Some Fierz identities and division algebras 402
4.c.5. N = 2 super-Poincaré groups in critical dimensions 405
4.c.6. Classical superparticles and superstrings 407
4.c.7. Actions for superstrings 416
4.c.8. Local symmetries of superstring actions 422

References 429
Index 455