Contents

Introduction
Acknowledgments

Part one: Reachable sets and controllability

1 Basic formalism and typical problems
 1 Differentiable manifolds
 1.1 Differentiable mappings
 1.2 The tangent space
 1.3 The cotangent space
 2 Vector fields, flows, and differential forms
 2.1 Derivations
 2.2 The tangent bundle and cotangent bundle
 2.3 Vector fields and differential forms
 3 Control systems
 3.1 Families of vector fields and control systems

Notes and sources

2 Orbits of families of vector fields
 1 The orbit theorem
 1.1 Submanifolds
 1.2 Integral submanifolds
 1.3 Proof of the orbit theorem
 2 Lie brackets of vector fields and involutivity
 2.1 Lie brackets of vector fields
 2.2 Lie algebras
 2.3 Involutivity and integral manifolds
 3 Analytic vector fields and their orbit properties
 3.1 Lie groups

Introduction
Acknowledgments
Contents

3.2 Group translations and invariant vector fields 51
3.3 Orbits of invariant vector fields 52
3.4 $GL_n(R)$ and its subgroups 54
3.5 Homogeneous spaces 55
4 Zero-time orbits of families of vector fields 56
4.1 Zero-time orbits of analytic vector fields 59
Notes and sources 63

3 Reachable sets of Lie-determined systems 64
1 Topological properties of reachable sets 65
 1.1 Reachable sets of the form $A_F(x, s\leq T)$ 65
 1.2 Reachable sets of the form $A_F(x, T)$ 70
2 The closure of the reachable sets and its invariants 75
 2.1 Closure and convexification of families of vector fields 76
 2.2 Time scaling and normalizers 82
3 The Lie saturate and controllability 86
4 Exact time controllability 89
Notes and sources 94

4 Control affine systems 95
1 Kinematic equations of a rolling sphere 96
2 Linear systems 100
3 Control of a rigid body by means of jet torques 103
4 Reachability by piecewise-constant controls 105
5 Reachability by smooth controls 110
6 Recurrent drifts and control of a rigid body 112
7 Compact constraints and the closure of the reachable sets 117
8 Non-holonomic aspects of control theory 121
Notes and sources 124

5 Linear and polynomial control systems 125
1 Feedback, controllability, and the structure of linear systems 126
 1.1 Controllability indices and the feedback-decomposition theorem 129
 1.2 Controllability and the spectrum 133
2 Bounded controls and the bang-bang principle 134
3 Controllability of linear systems with bounded controls 137
4 Polynomial drifts 141
 4.1 Homogeneous polynomial vector fields and their Lie algebras 143
 4.2 Controllability 147
Notes and sources 148
Contents

Part one: Systems on Lie groups and homogeneous spaces

6 Systems on Lie groups and homogeneous spaces 150
1 Families of right-invariant vector fields on a Lie group 153
 1.1 Compact Lie groups 154
 1.2 Orthogonal and symplectic groups and the unitary group 159
 1.3 Stiff Serret-Frenet frames 162
 1.4 The Grassmann manifolds 163
 1.5 Motions of a sphere rolling on another sphere 165
 1.6 Quaternions and rotations 169
2 Semidirect products of Lie groups 177
3 Controllability properties of affine systems 182
4 Controllability on semisimple Lie groups 185
Notes and sources 193

Part two: Optimal control theory

7 Linear systems with quadratic costs 199
1 Assumptions and their consequences 200
 1.1 Optimality and the boundaries of the reachable sets 202
2 The maximum principle 204
 2.1 Canonical coordinates and Hamiltonian vector fields 204
 2.2 Necessary and sufficient conditions of optimality 207
 2.3 The Euler-Lagrange equation 214
3 Conjugate points for the regular problem 216
4 Applications: Wirtinger’s inequality and Hardy-Littlewood systems 219
Notes and sources 226

8 The Riccati equation and quadratic systems 228
1 Symplectic vector spaces 230
 1.1 The geometry of linear Lagrangians 232
2 Lagrangians and the Riccati equation 234
3 The algebraic Riccati equation 241
4 Infinite-horizon optimal problems 244
5 Hardy-Littlewood inequalities 251
Notes and sources 258

9 Singular linear quadratic problems 259
1 The structure of the strong Lie saturate 261
 1.1 The structure of jump fields 267
 1.2 The saturated linear quadratic system 272
2 The maximum principle and its consequences 275
3 The reduction procedure 283
Contents

4 The optimal synthesis
Notes and sources

10 Time-optimal problems and Fuller's phenomenon
1 Linear time-optimal problems: the maximum principle
 1.1 Time-optimal control of linear mechanical systems
2 The brachistochrone problem and Zermelo's navigation problem
3 Linear quadratic problems with constraints, and Fuller's phenomenon
Notes and sources

11 The maximum principle
1 The maximum principle in \(\mathbb{R}^n \)
 1.1 Background
 1.2 The basic optimal problem and the maximum principle
 1.3 The maximum principle and the classic necessary conditions for optimality
 1.4 The minimal surface of revolution
2 Extensions to differentiable manifolds
 2.1 The symplectic structure of the cotangent bundle
 2.2 Variational problems on manifolds and the maximum principle
 2.3 Euler's elastic problem and the problem of Dubins
Notes and sources

12 Optimal problems on Lie groups
1 Hamiltonian vector fields
 1.1 Realization of the cotangent bundle as the product \(G \times \mathcal{L}^* \)
 1.2 The symplectic form
2 The rigid body and the equations for the heavy top
3 Left-invariant control systems and co-adjoint orbits
4 The elastic problem in \(\mathbb{R}^3 \) and the kinetic analogue of Kirchhoff
5 Casimir functions and the conservation laws
 5.1 Left-invariant optimal problems on the group of motions of a plane
 5.2 Left-invariant optimal problems on \(SO_3(\mathbb{R}) \) and \(SO(2, 1) \)
Notes and sources

13 Symmetry, integrability, and the Hamilton-Jacobi theory
1 Symmetry, Noether's theorem, and the maximum principle
Contents

2 The geometry of Lagrangian manifolds and the Hamilton-Jacobi theory 414
3 Integrability 424
 3.1 Integrable systems on the Heisenberg group 424
 3.2 Integrable systems on the group of motions of a plane 430
 3.3 Integrability on $SO_3(\mathbb{R})$ 436
Notes and sources 443

14 Integrable Hamiltonian systems on Lie groups: the elastic problem, its non-Euclidean analogues, and the rolling-sphere problem 444
 1 The symmetric elastic problem in \mathbb{R}^3 446
 1.1 Euler angles and elastic curves 453
 2 Non-Euclidean symmetric elastic problems 456
 2.1 Algebraic preliminaries 456
 2.2 The structure of extremal curves 458
 2.3 The Kowalewski elastic problem 465
 3 Rolling-sphere problems 467
 3.1 The extremals for the rolling sphere in E^2 468
 3.2 Noninflectional solutions 477
 3.3 Inflectional solutions 479
Notes and sources 481

References 483
Index 489