The Collected Works of
Eugene Paul Wigner

Part A

The Scientific Papers

Volume III

Part I: Particles and Fields
Annotated by Arthur Wightman

Part II: Foundations of Quantum Mechanics
Annotated by Abner Shimony

Edited by Arthur S. Wightman

Springer
PART I
Particles and Fields

Wigner on Particles and Fields
Annotation by Arthur S. Wightman .. 3

Remark on Einstein's New Formulation of the Principle
of General Relativity / Eine Bemerkung zu Einsteins
neuer Formulierung des allgemeinen Relativitätsprinzips 25

Calculation of the Natural Line Breadth on the Basis
of Dirac's Light Theory / Berechnung der natürlichen Linienbreite
auf Grund der Diracschen Lichttheorie (with V. Weisskopf) 30

On the Natural Line Breadth in the Radiation of the Harmonic
Oscillator / Über die natürliche Linienbreite in der Strahlung
des harmonischen Oszillators (with V. Weisskopf) 50

Relativistic Wave Equations / Relativistische Wellengleichungen .. 62

Group Theoretical Discussion of Relativistic Wave Equations
(with V. Bargmann) ... 82

Do the Equations of Motion Determine the Quantum Mechanical
Commutation Relations? ... 95

Some Remarks on the Infinite de Sitter Space 97

The Intrinsic Parity of Elementary Particles
(with G. C. Wick and A. S. Wightman).. 102

On Kinematic and Dynamic Laws of Symmetry 107

Conservation Laws in Classical and Quantum Physics 109

Relativistic Invariance in Quantum Mechanics 113

Relativistic Invariance of Quantum-Mechanical Equations 129

Must the Photon Mass Be Zero?
Discussion of Paper by L. Bass and E. Schrödinger 146

Quantum Limitations of the Measurement of Space–Time Distances
(with H. Salecker) ... 148

Measurement of the Curvature in a Two-Dimensional Universe 155

Geometry of Light Paths Between Two Material Bodies 156

Invariant Quantum Mechanical Equations of Motion 161

Events, Laws of Nature, and Invariance Principles 185

Classical Relativistic Mechanics of Interacting Point Particles
(with H. Van Dam) ... 199
The Conceptual Basis and Use of the Geometric Invariance Principles
(with R. M. F. Houtappel and H. Van Dam) .. 206

Instantaneous and Asymptotic Conservation Laws for Classical
Relativistic Mechanics of Interacting Point Particles (with H. Van Dam) 244
de Sitter Space and Positive Energy (with T. O. Philips) 250
Proof of the Fermion Superselection Rule Without the Assumption
of Time-Reversal Invariance (with G. C. Hegerfeldt and K. Kraus) 296
Relativistic Interaction of Classical Particles .. 299
Superselection Rule for Charge (with G. C. Wick and A. S. Wightman) . 307
Summary of the Course: What I Have Learned 310
Relativistic Wave Equations Admitting Only Positive Energy 321
Invariant Theoretic Derivation of the Connection
Between Momentum and Velocity (with S. M. W. Ahmad) 322
On the Relation Between Momentum and Velocity
for Elementary Systems (with R. F. O'Connell) 333
Position Operators for Systems Exhibiting the Special Relativistic
Relation Between Momentum and Velocity (with R. F. O'Connell) 335
Fifty Years of Symmetry Operators ... 338
The Basic Conflict Between the Concepts of General Relativity
and of Quantum Mechanics ... 350
Is the Principle of Causality Valid? / Gilt das Kausalitätsprinzip? 351
The Role and Value of Symmetry Principles and Einstein's Contribution
to Their Recognition ... 353
The Meaning of Symmetry ... 361
The Use and Ultimate Validity of Invariance Principles 366
Are Quantum Mechanics and Relativity Theory Consistent? 373
Cylindrical Group and Massless Particles (with Y. S. Kim) 380
Covariant Phase-Space Representation for Localized Light Waves
(with Y. S. Kim) .. 385

Bibliography of Papers on Particles and Fields 391
Papers Reprinted in Volume III .. 391
Papers Related But Reprinted in Other Volumes
of The Collected Works ... 395
Papers Related But Not Reprinted in The Collected Works 397

PART II

Foundations of Quantum Mechanics

Wigner on Foundations of Quantum Mechanics
Annotation by Abner-Shimony ... 401

The Measurement of Quantum Mechanical Operators / Die Messung
quantenmechanischer Operatoren .. 415
The Probability of the Existence of a Self-Reproducing Unit 423
Quantum Mechanical Measurements (with M. Yanase) 431
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Quantum Mechanical Measurement /</td>
<td>432</td>
</tr>
<tr>
<td>Theorie der quantenmechanischen Messung</td>
<td></td>
</tr>
<tr>
<td>Comments on Professor Putnam's Comments (with H. Margenau)</td>
<td>440</td>
</tr>
<tr>
<td>The Problem of Measurement</td>
<td>442</td>
</tr>
<tr>
<td>Information Contents of Distributions (with M. M. Yanase)</td>
<td>452</td>
</tr>
<tr>
<td>On the Positive Semidefinite Nature of a Certain Matrix Expression</td>
<td>461</td>
</tr>
<tr>
<td>(with M. M. Yanase)</td>
<td></td>
</tr>
<tr>
<td>Does Quantum Mechanics Exclude Life?</td>
<td>471</td>
</tr>
<tr>
<td>Reply to Professor Ageno's Letter:</td>
<td></td>
</tr>
<tr>
<td>Does Quantum Mechanics Exclude Life? (with P. T. Landsberg)</td>
<td>474</td>
</tr>
<tr>
<td>Some Comments Concerning Measurements in Quantum Mechanics</td>
<td></td>
</tr>
<tr>
<td>(with J. M. Jauch and M. M. Yanase)</td>
<td>475</td>
</tr>
<tr>
<td>Are We Machines?</td>
<td>483</td>
</tr>
<tr>
<td>Epistemology of Quantum Mechanics – Its Appraisal and Demands</td>
<td>490</td>
</tr>
<tr>
<td>On the Change of the Skew Information in the Process of Quantum</td>
<td></td>
</tr>
<tr>
<td>Mechanical Measurements (with A. Frenkel and M. M. Yanase)</td>
<td>505</td>
</tr>
<tr>
<td>On Hidden Variables and Quantum Mechanical Probabilities</td>
<td>515</td>
</tr>
<tr>
<td>On the Observability of the Collision Matrix (with F. E. Goldrich)</td>
<td>524</td>
</tr>
<tr>
<td>On the Time–Energy Uncertainty Relation</td>
<td>538</td>
</tr>
<tr>
<td>Analysis of the Quantum Mechanical Measurement Process</td>
<td></td>
</tr>
<tr>
<td>(with M. M. Yanase)</td>
<td>549</td>
</tr>
<tr>
<td>On Bub's Misunderstanding of Bell's Locality Argument</td>
<td>565</td>
</tr>
<tr>
<td>(with S. Freedman)</td>
<td></td>
</tr>
<tr>
<td>The Nonrelativistic Nature of the Present Quantum Mechanical</td>
<td>567</td>
</tr>
<tr>
<td>Measurement Theory</td>
<td></td>
</tr>
<tr>
<td>Bibliography of Papers on Foundations of Quantum Mechanics</td>
<td>573</td>
</tr>
<tr>
<td>Papers Reprinted in Volume III</td>
<td>573</td>
</tr>
<tr>
<td>Papers Related But Reprinted in Other Volumes</td>
<td></td>
</tr>
<tr>
<td>of The Collected Works</td>
<td>575</td>
</tr>
<tr>
<td>Papers Related But Not Reprinted in The Collected Works</td>
<td>576</td>
</tr>
</tbody>
</table>