LIST OF CONTENTS

PREFACE
 ix

ACKNOWLEDGEMENTS
 xi

SYMBOL LIST
 xii

CONVERSION FACTORS
 xvi

GLOSSARY
 xxii

1. INTRODUCTION

1.1 Purpose and scope 1
1.2 General description of CPT and CPTU 1
1.3 Role of CPT in site investigation 2
1.4 Historical background
 1.4.1 Mechanical cone penetrometers 4
 1.4.2 Electric cone penetrometers 4
 1.4.3 The piezocone 6

2. EQUIPMENT AND PROCEDURES

2.1 Cone penetrometer and piezocone 8
2.2 Pushing equipment
 2.2.1 On land 8
 2.2.2 Over water 10
 2.2.3 Depth of penetration 13
2.3 Test procedures
 2.3.1 Pre-drilling, on land testing 16

2.3.2 Verticality 16
2.3.3 Reference measurements 17
2.3.4 Rate of penetration 17
2.3.5 Interval of readings 17
2.3.6 Depth measurements 18
2.3.7 Saturation of piezocones 18
2.3.8 Dissipation test 19
2.4 Data acquisition 20
2.5 Calibration of sensors 20
2.6 Maintenance 22
2.7 Choice of capacity of load cells 22
2.8 Precision and accuracy 23
2.9 Summary of performance checks and maintenance requirements 24

3. CHECKS, CORRECTIONS AND PRESENTATION OF DATA

3.1 Factors affecting measurements and corrections
 3.1.1 Pore water pressure effects on \(q_c \) and \(f_s \) 25
 3.1.2 Filter location 28
 3.1.3 Effect of axial load on pore water pressure readings 31
 3.1.4 Temperature effects 31
 3.1.5 Inclination 32
 3.1.6 Calibration and resolution of errors 32
 3.1.7 Effect of wear 33
LIST OF CONTENTS

3.1.8 Correction for CPTU zeroed at the bottom of a borehole 33
3.2 Presentation of results 34
3.2.1 Measured parameters 34
3.2.2 Derived parameters 36
3.2.3 Additional information 38
3.3 Checks on data quality 38

4. STANDARDS AND SPECIFICATIONS 39
4.1 ISSMFE International Reference Test Procedure for Cone Penetration Test (CPT) 39
4.5 Dutch Standard: Determination of the Cone Resistance and Sleeve Friction of Soil. NEN5140 (1996) 43
4.6 Recommendations 44

5. INTERPRETATION OF CPT/PIEZOCONE DATA 45
5.1 General factors affecting interpretation 45
5.1.1 Equipment design 46
5.1.2 In situ stresses 46
5.1.3 Compressibility, cementation and particle size 46
5.1.4 Stratigraphy 46
5.1.5 Rate of penetration 47
5.1.6 Pore pressure element location 48
5.2 Soil stratigraphy 50
5.3 Soil classification 51
5.4 Interpretation in fine-grained soils 55
5.4.1 State characteristics 56
5.4.1.1 Soil unit weight 56
5.4.1.2 Overconsolidation ratio 56
5.4.1.3 In situ horizontal stress 61
5.4.2 Strength characteristics 63
5.4.2.1 Undrained shear strength 63
5.4.2.2 Sensitivity 68
5.4.2.3 Effective stress strength parameters 69
5.4.3 Deformation characteristics 71
5.4.3.1 Constrained modulus 71
5.4.3.2 Undrained Young’s modulus 73
5.4.3.3 Small strain shear modulus 74
5.4.4 Flow and consolidation characteristics 74
5.4.4.1 Coefficient of consolidation 75
5.4.4.2 Coefficient of permeability (hydraulic conductivity) 80
5.5 Interpretation in coarse-grained soils 81
5.5.1 State characteristics 81
5.5.1.1 Relative density (density index) 81
5.5.1.2 State parameter 85
5.5.1.3 Overconsolidation ratio 88
5.5.1.4 In situ horizontal stress 88
5.5.2 Strength characteristics 89
5.5.2.1 Effective stress strength parameters 89
5.5.3 Deformation characteristics 93
5.5.3.1 Young’s modulus 93
5.5.3.2 Constrained modulus 93
5.5.3.3 Small strain shear modulus 94
5.6 Available experience and interpretation in other material 94
5.6.1 Intermediate soils (clayey sands to silts) 95
5.6.1.1 Penetration behaviour 95
5.6.1.2 Typical results and classification 95
5.6.1.3 Undrained shear strength 96
5.6.1.4 Effective stress strength parameters 96
5.6.1.5 Constrained modulus 96
5.6.1.6 Small strain shear modulus 97
5.6.1.7 Coefficient of consolidation 98
5.6.1.8 General experience 98
5.6.2 Peat/organic silt 98
5.6.3 Underconsolidated clay 100
5.6.4 Chalk 100
5.6.5 Calcareous soils 101
5.6.5.1 Soil classification 102
5.6.5.2 Undrained shear strength 102
5.6.5.3 Relative density 103
5.6.5.4 Effective stress strength parameters 103
5.6.5.5 Pile side friction 103
5.6.6 Cemented sands 103
5.6.7 Snow 107
5.6.8 Permafrost and ice 107
5.6.8.1 Identification of permafrost/ice layers 107
5.6.8.2 Special procedures for penetration tests in frozen soil 108
5.6.8.3 Determination of creep parameters 108
5.6.8.4 General comment 111
5.6.9 Gas hydrates 111
5.6.10 Residual soils 111
5.6.11 Mine tailings 112
5.6.12 Sawdust and wood choppings 114
5.6.13 Dutch cheese 116
5.6.14 Slurry walls 116
LIST OF CONTENTS

5.6.15 Volcanic soils 117
5.6.16 Fuel ash 117
5.6.17 Loess soil 119
5.6.18 Lunar soil 120
5.7 Examples of unusual behaviour 120
5.7.1 Limiting negative pore pressures due to cavitation 120
5.7.2 Negative pore pressure measurement with filter on the cone 121
5.7.3 Effect of the weight of rig on shallow test results 122
5.8 The use of non-standard equipment or procedures 123
5.8.1 Cone size and scale effects 123
5.8.2 Cone penetrometer geometry 125
5.8.2.1 Length of the cylindrical portion behind the cone included in q 125
5.8.2.2 Reduced area behind the cone 125
5.8.2.3 Non-standard position and area of friction sleeve 126
5.8.2.4 Cone apex angle 127
5.8.3 Rate of penetration 127
5.8.4 Set-up tests 128
5.8.5 Applying water during penetration 132
5.8.6 Vibratory cone penetrometer 132
5.9 Statistical treatment of data 132
5.9.1 Definitions 133
5.9.2 Sources of uncertainty and variability of soil properties 134
5.9.3 Statistical treatment 135
5.9.4 Site investigation strategy and Bayesian updating techniques 143
5.9.5 Recommendation 144
5.10 Software application 145

6. DIRECT APPLICATION OF CPT/CPTU RESULTS 149
6.1 Correlations with SPT 149
6.2 Deep foundations 151
6.2.1 Axial capacity 151
6.2.2 Factor of safety 155
6.2.3 Settlement 155
6.2.4 Skirt penetration resistance 156
6.3 Shallow foundations 157
6.3.1 Bearing capacity 157
6.3.2 Settlement 158
6.4 Ground improvement – quality control 159
6.5 Liquefaction 164
6.5.1 Liquefaction definitions 164
6.5.2 Application of CPT for liquefaction assessment 166
6.5.2.1 Cyclic softening 166
6.5.2.2 Flow liquefaction 169
6.5.2.3 Minimum undrained shear strength 171
6.5.3 Recommendations for liquefaction evaluation 171
6.7 ADDITIONAL SENSORS THAT CAN BE INCORPORATED 172
7.1 Lateral stress measurements 172
7.1.1 Equipment 172
7.1.2 Typical results 173
7.1.3 Interpretation 174
7.2 Cone pressuremeter 175
7.2.1 Equipment 175
7.2.2 Testing procedure 177
7.2.3 Interpretation 178
7.3 Seismic measurements 179
7.3.1 Equipment and procedures 180
7.3.2 Typical results and interpretation 181
7.4 Electrical resistivity measurements 182
7.4.1 Principles for measurement 182
7.4.2 Equipment and procedures 183
7.4.3 Typical results and interpretation 184
7.5 Heat flow measurements 186
7.6 Radioisotope measurements 186
7.6.1 Equipment, measurement principles and procedures 186
7.6.2 Typical results 189
7.6.3 Discussion on soil density measured by NDT 189
7.7 Acoustic noise 190
8. GEO-ENVIRONMENTAL APPLICATIONS OF PENETRATION TESTING 192
8.1 Objectives of a geo-environmental site investigation 192
8.2 CPT technology for site characterization 193
8.3 Geo-environmental penetrometer logging devices 193
8.3.1 Temperature 193
8.3.2 Electrical resistivity and conductivity 193
8.3.3 Dielectric measurements 194
8.3.4 pH sensors 195
8.3.5 Redox potential 196
8.3.6 Gamma and neutron sensors 196
8.3.7 Laser induced fluorescence 196
8.4 Geo-environmental penetrometer sampling devices 199
8.4.1 Liquid samplers 199
8.4.2 Vapour samplers 201
8.4.3 Solid samplers 201
8.5 Sealing and decontamination procedures 201
8.6 Future trends 202
8.7 Summary 203
9. EXAMPLES

<table>
<thead>
<tr>
<th>Example profiles</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.1 Marine, lightly overconsolidated clay, Onsay, Norway</td>
<td>204</td>
</tr>
<tr>
<td>9.1.2 Organic clay, lightly overconsolidated, Lilla Mellösa, Sweden</td>
<td>205</td>
</tr>
<tr>
<td>9.1.3 Overconsolidated Yoldia (Aalborg) clay, Aalborg, Denmark</td>
<td>207</td>
</tr>
<tr>
<td>9.1.4 Overconsolidated clay till, Cowden, UK</td>
<td>208</td>
</tr>
<tr>
<td>9.1.5 Sand over silty clay, McDonald’s Farm, Vancouver, BC</td>
<td>209</td>
</tr>
<tr>
<td>9.1.6 Overconsolidated dense sand, Dunkirk, France</td>
<td>210</td>
</tr>
<tr>
<td>9.1.7 Normally consolidated very silty clay, Pentre, UK</td>
<td>211</td>
</tr>
<tr>
<td>9.2 Worked examples</td>
<td></td>
</tr>
<tr>
<td>9.2.1 Loose to medium dense sand, Massey Tunnel site, Canada</td>
<td>213</td>
</tr>
<tr>
<td>9.2.2 Very dense overconsolidated sand, Sleipner, North Sea</td>
<td>216</td>
</tr>
<tr>
<td>9.2.3 Stiff overconsolidated Gault clay, Madingley, UK</td>
<td>217</td>
</tr>
</tbody>
</table>

9.2.4 Normally consolidated soft alluvial clay, Bothkennar, UK | 218

10. FUTURE TRENDS

<table>
<thead>
<tr>
<th>Trends</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Recent developments</td>
<td>223</td>
</tr>
<tr>
<td>10.2 Future developments</td>
<td>223</td>
</tr>
</tbody>
</table>

REFERENCES

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A: ISSMFE REFERENCE TEST PROCEDURE</td>
<td>249</td>
</tr>
<tr>
<td>APPENDIX B: SWEDISH STANDARD FOR CONE TESTING</td>
<td>261</td>
</tr>
<tr>
<td>APPENDIX C: CALIBRATION CHAMBER TESTING OF SANDY SOILS</td>
<td>291</td>
</tr>
</tbody>
</table>

INDEX | 305