Applications of Time Series Analysis in Astronomy and Meteorology

Edited by
T. Subba Rao
University of Manchester Institute of Science and Technology, Manchester, UK

M. B. Priestley
University of Manchester Institute of Science and Technology, Manchester, UK

and

O. Lessi
University of Padua, Italy

CHAPMAN & HALL
London • Weinheim • New York • Tokyo • Melbourne • Madras
Contents

<table>
<thead>
<tr>
<th>List of Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xv</td>
</tr>
<tr>
<td>Edward J. Hannan, 1921–1994</td>
<td>xvii</td>
</tr>
<tr>
<td>Oliviero Lessi, 1953–1995</td>
<td>xxv</td>
</tr>
<tr>
<td>PART ONE Time Series—Theory and Methodology</td>
<td>1</td>
</tr>
<tr>
<td>1. A short history of time series</td>
<td>3</td>
</tr>
<tr>
<td>M. B. Priestley</td>
<td></td>
</tr>
<tr>
<td>2. Frequency estimation</td>
<td>24</td>
</tr>
<tr>
<td>E. J. Hannan, D. Huang and B. G. Quinn</td>
<td></td>
</tr>
<tr>
<td>3. Asymptotic expansion of estimators for diffusions with small noises</td>
<td>41</td>
</tr>
<tr>
<td>N. Yoshida</td>
<td></td>
</tr>
<tr>
<td>4. Spatial–temporal spectral analysis with random sampling</td>
<td>45</td>
</tr>
<tr>
<td>I-Shang Chow and Keh-Shin Lii</td>
<td></td>
</tr>
<tr>
<td>5. Detection of periodicities</td>
<td>65</td>
</tr>
<tr>
<td>M. B. Priestley</td>
<td></td>
</tr>
<tr>
<td>6. Spectral and multivariate probability density estimation of continuous-time stationary processes from randomly sampled data</td>
<td>89</td>
</tr>
<tr>
<td>Elias Masry</td>
<td></td>
</tr>
<tr>
<td>7. Minimum distance approach in parametric estimation for diffusion processes</td>
<td>103</td>
</tr>
<tr>
<td>Yu. A. Kutoyants</td>
<td></td>
</tr>
<tr>
<td>8. From data to models</td>
<td>119</td>
</tr>
<tr>
<td>D. Guegan</td>
<td></td>
</tr>
<tr>
<td>9. Filtering of spatial time series</td>
<td>130</td>
</tr>
<tr>
<td>G. Cariolaro</td>
<td></td>
</tr>
</tbody>
</table>
Contents

10. Time-domain and frequency-domain analysis of non-linear astronomical time series
 T. Subba Rao

PART TWO Applications to Astronomy

11. Time series problems in astronomy: an introduction
 Eric D. Feigelson

12. Time delay estimates for Q0957 + 561 A, B
 David J. Thomson and Rudy Schild

13. Continuum power spectrum components in X-ray sources: detailed modelling and search for coherent periodicities
 L. Stella, E. Arlandi, G. Tagliaferri, G. L. Israel

14. Wavelet methods in astronomical time series analysis
 Jeffrey D. Scargle

15. Non-parametric methods for shift and periodicity detection in irregularly measured data
 Jaan Pelt

16. A multi-channel, cross-spectral technique for calculating best-fit time-delay spectra
 Brian Vaughan

17. Period analysis of variable stars
 J. Cuypers

18. Change analysis of astronomical data
 F. Lombard and C. Koen

19. Doppler tomography of starspot distributions on stellar surfaces
 A. Collier Cameron

20. Nowcasting astronomical seeing and forecasting telescope environment for the ESO VLT
 Fionn Murtagh and Marc Sarazin

21. Linear and non-linear modelling of the geomagnetic aa indices
 Gy. Terdik
Contents

22. A sample of astronomical time series
 Paul Hertz and Eric D. Feigelson
 340

PART THREE - Applications to Meteorology and Climatology

23. Problems and examples in the estimation of fractal dimension from meteorological and earthquake data
 D. Vere-Jones, R. B. Davies, D. Harte, T. Mikosch and Q. Wang
 359

24. Characterizing trends in climatological time series: an application to Brera Observatory (Milan) rainfall series
 R. Sneyers, A. M. Siani and S. Palmieri
 376

25. Applications of singular spectrum analysis to climatological time series
 R. Vautard and C. A. Pires
 388

26. Change points in meteorological time series
 Pierre Hubert
 399

27. Detection of pollution signals in tree-ring series using AR processes and neural networks
 J. Guiot and L. Tessier
 413

28. Statistical verification studies and future scenarios of modelled climate change due to the 'greenhouse effect'
 Christian-D. Schönwiese
 427

29. Controlling the homogeneity of a long meteorological series: the series of Padova (1725–present)
 Dario Camuffo and Franco Zardini
 441

Index

460