CONTENTS

Introduction

1

Chapter 1 Linear extension and Moore spaces

1.1 Detecting functors, linear extensions, and the cohomology of categories 8
1.2 Whitehead's quadratic functor Γ 15
1.3 Moore spaces and homotopy groups with coefficients 18
1.4 Suspended pseudo-projective planes 21
1.5 The homotopy category of Moore spaces M^n, $n \geq 3$ 23
1.6 Moore spaces and the category G 25

Chapter 2 Invariants of homotopy types

2.1 The Hurewicz homomorphism and Whitehead's certain exact sequence 32
2.2 Γ-groups with coefficients 40
2.3 An exact sequence for the Hurewicz homomorphism with coefficients 45
2.4 Infinite symmetric products and Kan loop groups 51
2.5 Postnikov invariants of a homotopy type 54
2.6 Boundary invariants of a homotopy type 63
2.7 Homotopy decomposition and homology decomposition 72
2.8 Unitary invariants of a homotopy type 76

Chapter 3 On the classification of homotopy types

3.1 kype functors 81
3.2 bype functors 85
3.3 Duality of bype and kype 89
3.4 The classification theorem 97
3.5 The semitrivial case of the classification theorem and Whitehead's classification 104
3.6 The split case of the classification theorem 107
3.7 Proof of the classification theorem 111

Chapter 4 The CW-tower of categories

4.1 Exact sequences for functors 117
4.2 Homotopy systems of order $(n + 1)$ 121
CONTENTS

4.3 The CW-tower of categories 124
4.4 Boundary invariants for homotopy systems 129
4.5 Three formulas for the obstruction operator 131
4.6 λ-Realizability 135
4.7 Proof of the boundary classification theorem 138
4.8 The computation of isotropy groups in the CW-tower 143

Chapter 5 Spanier–Whitehead duality and the stable CW-tower 149
5.1 Cohomotopy groups 149
5.2 Spanier–Whitehead duality 152
5.3 Cohomology operations and homotopy groups 156
5.4 The stable CW-tower and its dual 163

Chapter 6 Eilenberg–Mac Lane and Moore functors 168
A Eilenberg–Mac Lane functors 168
6.1 Homology of Eilenberg–Mac Lane spaces 168
6.2 Some functors for abelian groups 170
6.3 Examples of Eilenberg–Mac Lane functors 178
6.4 On $(m - 1)$-connected $(n + 1)$-dimensional homotopy types with $\pi_i X = 0$ for $m < i < n$ 181
6.5 Split Eilenberg–Mac Lane functors 184
6.6 A transformation from homotopy groups of Moore spaces to homology groups of Eilenberg–Mac Lane spaces 186

B Moore functors 190
6.7 Moore types and Moore functors 191
6.8 On $(m - 1)$-connected $(n + 1)$-dimensional homotopy types X with $H_i X = 0$ for $m < i < n$ 195
6.9 The stable case with trivial 2-torsion 196
6.10 Moore spaces and Spanier–Whitehead duality 198
6.11 Homotopy groups of Moore spaces in the stable range 202
6.12 Stable and principal maps between Moore spaces 206
6.13 Quadratic \mathbb{Z}-modules 215
6.14 Quadratic derived functors 225
6.15 Metastable homotopy groups of Moore spaces 229

Chapter 7 The homotopy category of $(n - 1)$-connected $(n + 1)$-types 239
7.1 A linear extension for types^n_1 240
7.2 The enriched category of Moore spaces 244
Chapter 8 On the homotopy classification of \((n - 1)\)-connected \((n + 3)\)-dimensional polyhedra, \(n \geq 4\)

8.1 Algebraic models of \((n - 1)\)-connected \((n + 3)\)-dimensional homotopy types, \(n \geq 4\) 249
8.2 On \(\pi_{n+2}M(A, n)\) 258
8.3 The group \(\Gamma_{n+2}\) of an \((n - 1)\)-connected space, \(n \geq 4\) 263
8.4 Proof of the classification theorem 8.1.6 267
8.5 Adem operations 269

Chapter 9 On the homotopy classification of 2-connected 6-dimensional polyhedra

9.1 Algebraic models of 2-connected 6-dimensional homotopy types 277
9.2 On \(\pi_5M(A, 3)\) 286
9.3 Whitehead’s group \(\Gamma_5\) of a 2-connected space 291

Chapter 10 Decomposition of homotopy types

10.1 The decomposition problem in representation theory and topology 294
10.2 The indecomposable \((n - 1)\)-connected \((n + 3)\)-dimensional polyhedra, \(n \geq 4\) 298
10.3 The \((n - 1)\)-connected \((n + 3)\)-dimensional polyhedra with cyclic homology groups, \(n \geq 4\) 314
10.4 The decomposition problem for stable types 316
10.5 The \((n - 1)\)-connected \((n + 2)\)-types with cyclic homotopy groups, \(n \geq 4\) 320
10.6 Example: the truncated real projective spaces \(\mathbb{R}P_{n+4}/\mathbb{R}P_n\) 327
10.7 The stable equivalence classes of 4-dimensional polyhedra and simply connected 5-dimensional polyhedra 330

Chapter 11 Homotopy groups in dimension 4

11.1 On \(\pi_4M(A, 2)\) 333
11.2 On \(\pi_5(A, M(B, 2))\) 344
11.3 On \(\Gamma_4X\) and \(\Gamma_3(B, X)\) 347
11.3A Appendix: nilization of \(\Gamma_4X\) 354
11.4 On \(H_3(B, K(A, 2))\) and difference homomorphisms 356
11.5 Elementary homotopy groups in dimension 4 361
11.6 The suspension of elementary homotopy groups in dimension 4 382

Chapter 12 On the homotopy classification of simply connected 5-dimensional polyhedra

12.1 The groups \(G(q, A)\) 386
12.2 Homotopy groups with cyclic coefficients 392
12.2A Appendix: theories of cogroups and generalized homotopy groups 397
12.3 The functor \(\Gamma_4\) 402
12.4 The bifunctor Γ_3 406
12.5 Algebraic models of 1-connected 5-dimensional homotopy types 412
12.6 The case $\pi_3 X = 0$ 418
12.7 The case $H_2 X$ uniquely 2-divisible 418
12.8 The case $H_2 X$ free abelian 423

Appendix A Primary homotopy operations and homotopy groups of mapping cones 425

A.1 Whitehead products 426
A.2 The James–Hopf invariants 431
A.3 The fibre of the retraction $A \vee B \to B$ and the Hilton–Milnor theorem 434
A.4 The loop space of a mapping cone 441
A.5 The fibre of a principal cofibration 444
A.6 EHP sequences 450
A.7 The operator P_g 456
A.8 The difference map ∇ 463
A.9 The left distributivity law 471
A.10 Distributivity laws of order 3 476

Bibliography 479

Notation for categories 485

Index 487