R. P. BURN

A pathway into number theory

Second edition
CONTENTS

Preface to the second edition xi
Introduction xiii

1 The fundamental theorem of arithmetic 1
1-24 Division algorithm 1
25-42 Greatest common divisor and Euclidean algorithm 7
43-61 Unique factorisation into primes 9
62-66 Infinity of primes 13
67 Mersenne primes 13
Summary 14
Historical note 14
Notes and answers 16

2 Modular addition and Euler’s ϕ function 22
1-18 Congruence classes and the Chinese remainder theorem 22
19-38 The groups $(\mathbb{Z}_n, +)$ and their generators 27
39-56 Euler’s ϕ function 33
57-64 Summing Euler’s function over divisors 36
Summary 37
Historical note 38
Notes and answers 39

3 Modular multiplication 48
1-20 Fermat’s theorem 48
21-25 Wilson’s theorem 53
26-33 Linear congruences 53
34-42 Fermat–Euler theorem 54
43-44 Simultaneous linear congruences 55
45-57 Lagrange’s theorem for polynomials 56
58-74 Primitive roots 61
75-87 Chevalley’s theorem 64
88-95 RSA codes 66
Contents

Summary 67
Historical note 68
Notes and answers 70

4 Quadratic residues 79
1-29 Quadratic residues and the Legendre symbol 79
30-43 Gauss' lemma 81
44-65 Law of quadratic reciprocity .. 84
Summary 87
Historical note 88
Notes and answers 89

5 The equation $x^n + y^n = z^n$, for $n = 2, 3, 4$ 97
1-18 The equation $x^2 + y^2 = z^2$ 97
19-23 The equation $x^4 + y^4 = z^4$ 100
24-26 The equation $x^2 + y^2 + z^2 = t^2$ 101
27-68 The equation $x^3 + y^3 = z^3$ 102
Summary 108
Historical note 108
Notes and answers 110

6 Sums of squares 119
1-36 Sums of two squares 119
37-52 Sums of four squares 123
53-54 Sums of three squares 126
55-61 Triangular numbers 126
Summary 127
Historical note 129
Notes and answers 130

7 Partitions 140
1-15 Ferrers' graphs 140
16-35 Generating functions 141
36-47 Euler's theorem 145
Summary 147
Historical note 147
Notes and answers 148

8 Quadratic forms 154
1-20 Unimodular transformations 154
21-31 Equivalent quadratic forms 158
32-43 Discriminant 162
44-52 Proper representation 164
53-72 Reduced forms 165
73-77 Automorphs of definite quadratic forms .. 168
Summary 169
Historical note 170
Notes and answers 171
Contents

9 Geometry of numbers 187
 1–28 Subgroups of a square lattice 187
 29–46 Minkowski’s theorem in two dimensions 192
 47–66 Subgroups of a cubic lattice 197
 67–73 Minkowski’s theorem in three dimensions 200
 74–86 Legendre’s theorem on $ax^2 + by^2 + cz^2 = 0$ 201
 Summary 204
 Historical note 204
 Notes and answers 206

10 Continued fractions 214
 1–7 Irrational square roots 214
 8–25 Convergence 214
 26–53 Purely periodic continued fractions 220
 54–71 Pell’s equation 223
 72–77 Lagrange’s theorem on quadratic irrationals 226
 78–82 Automorphs of the indefinite form $ax^2 - by^2$ 227
 Summary 229
 Historical note 230
 Notes and answers 232

11 Approximation of irrationals by rationals 242
 1–10 Naive approach 242
 11–22 Farey sequences 243
 23–33 Hurwitz’ theorem 245
 34–43 Liouville’s theorem 247
 Summary 250
 Historical note 250
 Notes and answers 251

Bibliography 257
Index 260