An Introduction to Radio Astronomy

Bernard F. Burke
Massachusetts Institute of Technology

and Francis Graham-Smith
Jodrell Bank, University of Manchester
5.2 Interferometers with finite bandwidth 54
5.3 Interferometers and finite source size 57
5.4 Fourier transforms and the u,v-plane 58
5.5 Practical considerations 60
5.6 Very-long-baseline interferometry (VLBI) 62
5.7 The interferometer in geodesy and astrometry 65
5.8 Interferometry at millimetre wavelengths 66

6 APERTURE SYNTHESIS 69
6.1 Interferometer arrays 70
6.2 The spectral sensitivity function 72
6.3 Filling the u,v-plane 73
6.4 Unfilled u,v-planes – VLA and MERLIN 75
6.5 VLBI imaging 77
6.6 Calibration of interferometer data 79
6.7 Synthesis imaging 80
6.8 Self-calibration 81
6.9 Aperture synthesis at millimetre wavelengths 84

7 THE ABSORPTION, AMPLIFICATION, REFRACTION AND ATTENUATION OF RADIO WAVES 85
7.1 Radiative transfer 85
7.2 Masers 87
7.3 Propagation through ionized gas 89
7.4 Faraday rotation 90
7.5 Scintillation 91
7.6 Propagation in the Earth’s atmosphere 93

8 GALACTIC CONTINUUM RADIATION 96
8.1 Stars, dust and gas 96
8.2 Varieties of galaxies 99
8.3 Measurement of antenna temperature 101
8.4 The spectrum of the galactic continuum 101
8.5 Cosmic rays and the magnetic field of the Galaxy 104
8.6 Synchrotron radiation 106
8.7 Polarization and Faraday rotation 111
8.8 Loops and spurs 114
8.9 The Local Bubble 116
8.10 Other galaxies 117

9 THE INTERSTELLAR MEDIUM 118
9.1 Temperature states of the ISM 118
9.2 Line formation in the ISM 119
9.3 Neutral hydrogen (H I) 121
9.4 Ionized hydrogen (H II) 125
9.5 The hot ionized component 129
9.6 Heating and cooling mechanisms 131
9.7 Dense molecular clouds 132
9.8 Radio molecular lines 133
9.9 Supernova remnants (SNR) 134
9.10 Dark matter 138

10 GALACTIC DYNAMICS 139
10.1 Atoms and molecules in the Milky Way 140
10.2 The circular approximation 141
10.3 Spiral structure 147
10.4 Strong non-circular motions 150
10.5 The galactic centre 155
10.6 The distribution of matter 157
10.7 The scale of the Galaxy 162

11 STARS 164
11.1 Surface brightness 164
11.2 The Sun and planets 166
11.3 Circumstellar masers 169
11.4 The silicon oxide masers 170
11.5 The water masers 171
11.6 The hydroxyl masers 171
11.7 Classical novae 173
11.8 Non-thermal radiation from binaries and flare stars 177
11.9 Recurrent novae 178
11.10 X-ray binaries – Cyg X-3 and SS 433 178

12 PULSARS 183
12.1 Neutron star structure 184
12.2 Rotational slowdown 186
12.3 Radio and optical emission from pulsars 189
12.4 The radiation mechanism 193
12.5 The population and evolution of pulsars 194
12.6 Binary orbits and interactions 199
12.7 Tests of general relativity 200

13 RADIO GALAXIES AND QUASARS 202
13.1 Spectra and dimensions 203
13.2 Structures 206
13.3 A simple model of active galactic nuclei 208
Contents

13.4 The accretion disk 212
13.5 The torus 214
13.6 The core and the jets 215
13.7 Spectra of quasars and other AGNs 216
13.8 The radio brightness temperature of the core 218
13.9 Superluminal motion 220
13.10 The radio jets and lobes 222
13.11 Radio galaxies with low luminosity 224

14 COSMOLOGY AND THE COSMIC MICROWAVE BACKGROUND 225
14.1 The Hubble flow 225
14.2 A simple Newtonian model 226
14.3 Relativistic cosmology 229
14.4 Big Bang cosmology 230
14.5 The cosmic microwave background 232
14.6 Anisotropy and distortions of the CMB 235
14.7 The inflation theory 237

15 COSMOLOGY: DISCRETE RADIO SOURCES AND GRAVITATIONAL LENSES 239
15.1 Evolution and the radio source counts 239
15.2 Angular diameters 242
15.3 Gravitational lensing 243
15.4 Observations of lenses: rings, quads and others 249
15.5 Time delay 253

16 THE PLACE OF RADIO IN ASTRONOMY 255
16.1 The cosmic microwave background 256
16.2 The interstellar medium 256
16.3 Angular resolution: stars and quasars 257
16.4 The protection of radio frequencies in astronomy 259

Appendix 1 Fourier transforms 261
Appendix 2 Celestial Coordinates, Distance and Time 268
Appendix 3 The Origins of Radio Astronomy 274
References and Recommended Reading 280

Index 295