Andrew Bruce Hong-Ye Gao

Applied Wavelet Analysis with S-PLUS

With 192 illustrations

Springer
1 Introduction
 1.1 Example 1: Digital Image Compression 2
 1.2 Example 2: Noise Removal 4
 1.3 Example 3: Time-Frequency Analysis 6
 1.4 Example 4: Prototyping Fast Algorithms 7
 1.5 References for Wavelet Analysis 8

2 Wavelet Analysis of 1-D Signals
 2.1 Wavelet Functions and Approximations 11
 2.1.1 Father and Mother Wavelets 13
 2.1.2 The Wavelet Approximation 14
 2.1.3 Location and Scale Families 15
 2.1.4 Orthogonal Wavelet Families 16
 2.2 The Discrete Wavelet Transform 19
 2.2.1 Computing the Discrete Wavelet Transform 19
 2.2.2 DWT Objects 22
 2.2.3 The Inverse Discrete Wavelet Transform 24
 2.2.4 The Wavelet Approximation Using the Largest Coefficients 24
 2.3 Multiresolution Analysis 27
 2.3.1 Computing a Multiresolution Decomposition 27
5.6 Subscripting by Coefficient 79
5.7 Bypassing the DWT Subscript, Assignment, and Math Operators 81

6 Nonparametric Estimation with Wavelets 83
6.1 Nonparametric Regression and Smoothing 84
6.2 Understanding Wavelet Shrinkage 86
 6.2.1 Wavelets are Good Building Blocks 86
 6.2.2 Noise Affects All Wavelet Coefficients 86
 6.2.3 De-Noising by Wavelet Shrinkage 87
 6.2.4 The WaveShrink Algorithm 88
 6.2.5 Theoretical Properties of Wavelet Shrinkage 90
6.3 Assessing the WaveShrink Fit 90
6.4 Tuning the Smooth 94
 6.4.1 Selecting the Shrinkage Function 94
 6.4.2 Selecting the Shrinkage Threshold 97
 6.4.3 Estimating the Scale of the Noise 99
 6.4.4 Choosing the Resolutions to Shrink 100
 6.4.5 Extra-Fine Tuning 100
6.5 Comparison with Other Smoothers 101
6.6 Variance and Bias Estimation in WaveShrink 102
6.7 Bootstrapping WaveShrink 103
6.8 WaveShrink Applied to Spectral Density Estimation 105

7 Wavelet Packet Analysis .. 111
7.1 Wavelet Packets .. 111
 7.1.1 Wavelet Packet Families 113
 7.1.2 Wavelet Packet Location and Scale Families 114
7.2 Wavelet Packet Tables 114
 7.2.1 Computing a Wavelet Packet Table 116
 7.2.2 Wavelet Packet Table Objects 117
7.3 Wavelet Packet Transforms 118
 7.3.1 Obtaining the DWT From a Table 119
 7.3.2 Selecting a Level 120
 7.3.3 General Wavelet Packet Transforms 120
 7.3.4 Inverting Wavelet Packet Transforms 122
 7.3.5 Decomposing a Wavelet Packet Transform 123
 7.3.6 Time-Frequency Plots for Wavelet Packets 125
7.4 The Best Basis Algorithm 128
 7.4.1 Computing a Best Basis 128
10.4 Comparison with DWT and Best Basis 204

11 Variations on Wavelet Analysis 211
 11.1 Non-Decimated Wavelets 211
 11.1.1 Wavelet Shrinkage with Non-Decimated
 Wavelets 212
 11.1.2 The "à trous" Wavelet Transform 215
 11.2 Robust Smoother-Cleaner Wavelets 216
 11.2.1 Smoother-Cleaner Algorithm 217
 11.2.2 Computing the Robust Smoother-Cleaner
 DWT 219
 11.2.3 Selecting the Robust DWT 221
 11.3 Creating and Using Your Own Wavelets 223
 11.3.1 Creating New Wavelets 223
 11.3.2 Analysis with Your Own Wavelet Functions 225

12 Wavelet Algorithms and Filters 229
 12.1 Wavelet Filters 230
 12.1.1 Orthogonal Wavelet Filters 230
 12.1.2 Convolution Formulas 231
 12.1.3 Transfer Functions 232
 12.1.4 Biorthogonal Wavelet Filters 234
 12.2 Implementing the Pyramid Algorithm 238
 12.3 The DWT as a Linear Transform 239
 12.4 Properties of Wavelet Functions 242
 12.5 The Dilation Equation 243
 12.5.1 Evaluating a Wavelet Function at the Dyadics 245
 12.5.2 Evaluating a Wavelet Function at the
 Integers 246
 12.6 Algorithms for the 2-D DWT 247

13 Wavelet Packet and Cosine Packet Algorithms 251
 13.1 Wavelet Packet Filters and Algorithms 252
 13.1.1 The Splitting Algorithm 252
 13.1.2 Wavelet Packet Filters 253
 13.1.3 Evaluating a Wavelet Packet Function .. 255
 13.2 Cosine Packet Algorithms 256
 13.2.1 Computing the DCT 256
 13.2.2 Computing the Cosine Packet Transform . 257
 13.2.3 Tapers for Orthogonal Cosine Packets . 260
13.2.4 Boundary Extension Rules 261
13.3 Algorithms for 2-D Packets 263
 13.3.1 The 2-D WPT Algorithm 263
 13.3.2 The 2-D CPT Algorithm 264

14 Boundary Conditions for Wavelet Analysis 267
 14.1 Types of Boundary Treatment Rules 268
 14.2 Considerations in Selecting a Boundary Method ... 271
 14.3 Comparing Boundary Treatments 273
 14.4 Boundary Correction Algorithms 275
 14.4.1 Examining the Matrix Operators 276

A Orthogonal Wavelet Functions 279

B Biorthogonal Wavelet Functions 287

C Wavelet Classes and Objects 295
 C.1 1-D Transform and Analysis Objects 295
 C.1.1 1-D Transforms 295
 C.1.2 Decompose Objects 298
 C.1.3 Other 1-D Analysis Objects 299
 C.2 Crystals, Molecules, and Atoms 299
 C.2.1 Crystals 299
 C.2.2 Molecules and Atoms 300
 C.3 2-D Transform and Analysis Objects 301
 C.3.1 2-D Transform Objects 301
 C.3.2 Other 2-D Objects 302
 C.4 Wavelet Functions, Filters, and Dictionaries ... 302

D S+WAVELETS Function List 305

References 317

Index 327