Linear Models for the Prediction of Animal Breeding Values

R.A. Mrode, PhD
Animal Data Centre
Fox Talbot House
Greenways Business Park
Bellinger Close
Chippenham
Wilts, UK
Contents

Preface ix

1 Genetic Evaluation with Different Sources of Records 1
 1.1 The Basic Model 1
 1.2 Breeding-value Prediction from the Animal’s Own Performance 3
 1.2.1 Single record 3
 1.2.2 Repeated records 4
 1.3 Breeding-value Prediction from Progeny Records 7
 1.4 Breeding-value Prediction from Pedigree 10
 1.5 Breeding-value Prediction for One Trait from Another 12
 1.6 Selection Index 13
 1.6.1 Accuracy of index 14
 1.6.2 Examples of selection indices using different sources of information 16
 1.6.3 Prediction of aggregate genotype 19
 1.6.4 Restricted selection index 22

2 Genetic Covariance Between Relatives 24
 2.1 The Numerator Relationship Matrix 24
 2.2 Decomposing the Relationship Matrix 26
 2.3 Computing the Inverse of the Relationship Matrix 28
 2.3.1 Inverse of the relationship matrix ignoring inbreeding 29
 2.3.2 Inverse of the relationship matrix taking inbreeding into account 31
 2.4 Inverse of the Relationship Matrix for Sires and Maternal Grandsires 33
2.4.1 An example of the inverse of the relationship matrix for sires and maternal grandsires 35

3 Best Linear Unbiased Prediction of Breeding Value: Univariate Models with One Random Effect 37
3.1 Brief Theoretical Background 38
3.2 A Model for an Animal Evaluation (Animal Model) 40
 3.2.1 Constructing the mixed-model equations 41
 3.2.2 Accuracy of evaluations 46
3.3 A Sire Model 48
 3.3.1 An illustration 49
3.4 Reduced Animal Model 51
 3.4.1 Defining the model 52
 3.4.2 An illustration 54
 3.4.3 An alternative approach 58
3.5 Animal Model with Groups 59
 3.5.1 An illustration 61

4 Best Linear Unbiased Prediction of Breeding Value: Models with Random Environmental Effects 67
4.1 Repeatability Model 67
 4.1.1 Defining the model 68
 4.1.2 An illustration 69
4.2 Model with Common Environmental Effects 73
 4.2.1 Defining the model 73
 4.2.2 An illustration 74

5 Best Linear Unbiased Prediction of Breeding Value: Multivariate Animal Models 77
5.1 Equal Design Matrices and No Missing Records 78
 5.1.1 Defining the model 78
 5.1.2 An illustration 80
5.2 Canonical Transformation 84
 5.2.1 The model 85
 5.2.2 An illustration 86
5.3 Equal Design Matrices with Missing Records 88
 5.3.1 An illustration 88
5.4 Cholesky Transformation 90
 5.4.1 Calculating the transformation matrix and defining the model 91
 5.4.2 An illustration 92
5.5 Unequal Design Matrices 94
 5.5.1 An illustration 94
5.6 Different Traits Recorded on Relatives 97
 5.6.1 Defining the model 97
5.6.2 An illustration

6 Maternal-trait Models: Animal and Reduced Animal Models

6.1 Animal Model for a Maternal Trait
 6.1.1 An illustration

6.2 Reduced Animal Model with Maternal Effects
 6.2.1 An illustration

6.3 Multivariate Maternal Animal Model

7 Non-additive Animal Models

7.1 Dominance Relationship Matrix

7.2 Animal Model with Dominance Effects
 7.2.1 Solving for animal and dominance genetic effects separately
 7.2.2 Solving for total genetic merit directly

7.3 Method for Rapid Inversion of the Dominance Matrix
 7.3.1 Inverse of the relationship matrix for subclass effects
 7.3.2 Prediction of dominance effects
 7.3.3 Calculating the inverse of the relationship matrix among dominance and subclass effects for an example pedigree

7.4 Epistasis
 7.4.1 Rules for the inverse of the relationship matrix for epistatic and subclass effects
 7.4.2 Calculating the inverse of the relationship matrix for epistatic and subclass effects for an example pedigree

8 Solving Linear Equations

8.1 Direct Inversion

8.2 Iteration on the Mixed-model Equations
 8.2.1 Jacobi iteration
 8.2.2 Gauss-Seidel iteration

8.3 Iterating on the Data
 8.3.1 Animal model without groups
 8.3.2 Animal model with groups
 8.3.3 Reduced animal model with maternal effects

Appendix A: Introductory Matrix Algebra

A.1 Matrix: a Definition

A.2 Special Matrices
 A.2.1 Square matrix
 A.2.2 Diagonal matrix
 A.2.3 Triangular matrix
 A.2.4 Symmetric matrix
Contents

A.3 Basic Matrix Operations
- A.3.1 Transpose of a matrix 157
- A.3.2 Matrix addition and subtraction 158
- A.3.3 Matrix multiplication 158
- A.3.4 Direct product of matrices 159
- A.3.5 Matrix inversion 159
- A.3.6 Rank of a matrix 161
- A.3.7 Generalized inverses 161
- A.3.8 Eigenvalues and eigenvectors 162

Appendix B: Recent Fast Algorithms for Calculating Inbreeding Based on the L Matrix
- B.1 Meuwissen and Luo Algorithm 163
 - B.1.1 Illustration of the algorithm 164
- B.2 Modified Meuwissen and Luo Algorithm 166
 - B.2.1 Illustration of the algorithm 168

Appendix C
- C.1 Outline of the Derivation of the Best Linear Unbiased Prediction (BLUP) 170
- C.2 Proof that \(\hat{b} \) and \(\hat{a} \) from Mixed-model Equations are the Generalized Least-square Solution of \(b \) and Best Linear Unbiased Prediction of \(a \) Respectively 171

Appendix D: A Method for Obtaining Approximate Reliability for Genetic Evaluations under an Animal Model 173

Appendix E
- E.1 Canonical Transformation: Procedure to Calculate the Transformation Matrix and its Inverse 176
- E.2 Canonical Transformation with Missing Records and Same incidence Matrices 177
 - E.2.1 Illustration 179
- E.3 Cholesky Decomposition 181

References 182

Index 185