Soil Behaviour in Earthquake Geotechnics

KENJI ISHIHARA
Department of Civil Engineering
Science University of Tokyo

This publication was supported by a generous donation from the Daido Life Foundation

CLARENDON PRESS • OXFORD
1996
6.2 Time dependency of low-amplitude shear modulus 107
6.3 Low-amplitude shear moduli from in situ tests 112
6.4 Estimation of shear modulus from the in situ penetration test 119
6.5 Poisson's ratio for saturated soils 120
References 123

7 STRAIN DEPENDENCY OF MODULUS AND DAMPING 127
7.1 Strain-dependent modulus and damping from laboratory tests 127
7.2 Evaluation of strain-dependent soil properties for in situ deposits 142
7.3 Factors affecting modulus reduction and damping characteristics 150
References 152

8 EFFECT OF LOADING SPEED AND STIFFNESS DEGRADATION OF COHESIVE SOILS 152
8.1 Classification of loading schemes 154
8.2 Deformation characteristics of soils under transient loading 162
8.3 Deformation characteristics of soils under cyclic loading 154
8.4 Evaluation of cyclic stiffness degradation 165
8.5 Threshold strains for cyclic degradation 172
8.6 Threshold strains and reference strain 177
References 177

9 STRENGTHS OF COHESIVE SOILS UNDER TRANSIENT AND CYCLIC LOADING CONDITIONS 180
9.1 Load patterns in dynamic loading tests 180
9.2 Definition of dynamic strength of soil 180
9.3 Transient loading conditions 186
9.4 Combined static and cyclic loading 187
9.5 Irregular loading conditions 192
References 206

10 RESISTANCE OF SAND TO CYCLIC LOADING 208
10.1 Simulation of field stress conditions in laboratory tests 208
10.2 The mechanism of liquefaction 208
10.3 Definition of liquefaction or cyclic softening 218
10.4 Cyclic resistance of reconstituted clean sand 221
10.5 Cyclic resistance of in situ deposits of sands 225
10.6 Cyclic resistance of silty sands 227
10.7 Cyclic resistance of gravelly soils 228
10.8 Effects of K_0 conditions on liquefaction resistance of sand 231
10.9 Cyclic resistance of sand under irregular seismic loading 233
10.10 Effects of confining stress and initial shear stress on liquefaction resistance 241
References 242

11 SAND BEHAVIOUR UNDER MONOTONIC LOADING 247
11.1 Flow and non-flow in undrained sand samples 247
CONTENTS

11.2 Compression characteristics of sand and the method of sample preparation 250
11.3 Steady state of sand 255
11.4 Quasi-steady state 257
11.5 Quasi-steady state of silty sands 262
11.6 Residual strength of fines-containing sand 268
11.7 Estimate of residual strength 272
11.8 Effects of the fabric on residual strength 275
11.9 Effects of the deformation mode on residual strength 278
References 279

12 EVALUATION OF LIQUEFACTION RESISTANCE BY IN SITU SOUNDINGS 282
12.1 Correlation based on field performances 282
12.2 Correlation based on laboratory tests 287
12.3 The effects of fines on cyclic strength 290
12.4 Correlation for gravelly soils 293
References 299

13 ANALYSIS OF LIQUEFACTION 301
References 306

14 SETTLEMENT IN SAND DEPOSITS FOLLOWING LIQUEFACTION 308
14.1 Basic concepts and procedures 308
14.2 Evaluation of settlement 312
References 315

15 FLOW AND NON-FLOW CONDITIONS AND RESIDUAL STRENGTH 316
15.1 Flow conditions in SPT and CPT 316
15.2 Correlation of residual strength and penetration resistance 325
References 330

16 ONSET CONDITION FOR LIQUEFACTION AND CONSEQUENTIAL FLOW 331
16.1 Interpretation of laboratory tests to assess in situ strength 331
16.2 Onset conditions for liquefaction and consequent flow 333
References 344

APPENDIX: METHODS OF SAMPLE PREPARATION 338
A.1 Moist placement method (wet tamping) 338
A.2 Dry deposition method 339
CONTENTS

A.3 Water sedimentation method 340
References 340

INDEX 341