Contents

1 Introduction

1.1 Examples of integrability 1
1.2 Outline of the book 7

Notes on Chapter 1 9

I Reductions of the ASDYM equation

2 Mathematical background I

2.1 Gauge theories 13
2.2 Space-time 14
2.3 Differential forms 16
2.4 Conformal transformations and compactified space-time 19
2.5 Bundles, connections, and curvature 23
2.6 The Yang–Mills equations 29

Notes on Chapter 2 30

3 The ASD Yang–Mills equation

3.1 ASD electromagnetic fields 32
3.2 Lax pairs 33
3.3 Yang's equation and the K-matrix 34
3.4 Lagrangians for the ASDYM equation 36
3.5 The Hamiltonian formalism 38

Notes on Chapter 3 42

4 Reduction of the ASDYM equation

4.1 Classification of reductions 43
4.2 Reductions of the linear ASD equation 45
4.3 Conformal reduction in the non-Abelian case 46
4.4 Invariant connections and Higgs fields 47
4.5 The space of orbits 49
4.6 Bäcklund transformations 55

Notes on Chapter 4 56

5 Reduction to three dimensions

5.1 The Bogomolny equation 59
5.2 Hyperbolic monopoles and other generalizations 60
5.3 Reduction by a null translation 63
6 Reduction to two dimensions
6.1 Two-dimensional groups of conformal motions
6.2 Reductions by \(H_{++} \)
6.3 Reduction by \(H_{+0} \)
6.4 Reduction by \(H_{\text{SD}} \)
6.5 Reduction by \(H_{\text{ASD}} \)
6.6 The Ernst equation
6.7 Reduction of Yang's equation
6.8 Liouville's equation
Notes on Chapter 6

7 Reductions to one dimension
7.1 Abelian reduction to one-dimension
7.2 Nahm's equations and tops
7.3 The motion of an \(n \)-dimensional rigid body
7.4 The Painlevé equations
7.5 Non-Abelian reductions
Notes on Chapter 7

8 Hierarchies
8.1 The KdV flows
8.2 The recursion operator for the ASDYM equation
8.3 Hamiltonian formalism
8.4 ASDYM and Bogomolny hierarchies
8.5 Reductions of the ASDYM flows
8.6 The generalized ASDYM equation
Notes on Chapter 8

II Twistor methods

9 Mathematical background II
9.1 Projective spaces and flag manifolds
9.2 Twistor space
9.3 Birkhoff's factorization theorem
9.4 Holomorphic vector bundles: the Čech description
9.5 \(\bar{\partial} \)-operators
9.6 Cohomology
9.7 The Grassmannian
9.8 Scattering on the real line
9.9 Spinors
Notes on Chapter 9
Contents

10 The twistor correspondence
- 10.1 The concrete form of the Penrose–Ward transform 171
- 10.2 The abstract form of the transform 176
- 10.3 The Painlevé property 179
- 10.4 Global solutions in Euclidean signature 180
- 10.5 Global solutions in ultrahyperbolic signature 187
- 10.6 The GASDYM equation 194
- 10.7 The truncated GASDYM hierarchy 195
- 10.8 The linear Penrose transform 196

Notes on Chapter 10 201

11 Reductions of the Penrose–Ward transform
- 11.1 Symmetries of the twistor correspondence 205
- 11.2 Symmetries of the twistor bundle 206
- 11.3 Reduced twistor spaces 211
- 11.4 The KdV and NLS equations 218
- 11.5 The initial value problem and inverse scattering 220
- 11.6 Isomonodromy and the Painlevé equations 231
- 11.7 The Schlesinger equation 239

Notes on Chapter 11 241

12 Twistor construction of hierarchies
- 12.1 Transformations of the patching matrix 245
- 12.2 DS operators and the GASDYM hierarchy 250
- 12.3 The twistor construction of the DS flows 254
- 12.4 Explicit construction of solutions from twistor data 264
- 12.5 Hamiltonian formalism 269
- 12.6 The KP equation and the KP hierarchy 274

Notes on Chapter 12 282

13 ASD metrics
- 13.1 Self-duality in curved space-time 284
- 13.2 The Levi-Civita connection 286
- 13.3 Spinors and the correspondence space 289
- 13.4 ASD conformal structures 294
- 13.5 Curved twistor spaces 300
- 13.6 Reductions 305
- 13.7 ASDYM fields and the switch map 307

Notes on Chapter 13 316

A Active and passive gauge transformations

B The Drinfeld–Sokolov construction

Notes on Appendix B 326
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Poisson and symplectic structures</td>
<td>328</td>
</tr>
<tr>
<td>Notes on Appendix C</td>
<td>338</td>
</tr>
<tr>
<td>D Reductions of the ASDYM equation</td>
<td>339</td>
</tr>
<tr>
<td>References</td>
<td>343</td>
</tr>
<tr>
<td>A note on notation</td>
<td>356</td>
</tr>
<tr>
<td>Index of notation</td>
<td>357</td>
</tr>
<tr>
<td>Index</td>
<td>359</td>
</tr>
</tbody>
</table>