AUTOMORPHIC FORMS AND REPRESENTATIONS

DANIEL BUMP
Stanford University

CAMBRIDGE UNIVERSITY PRESS
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advice to the Reader</td>
<td>xi</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>xiv</td>
</tr>
<tr>
<td>Notations</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 Modular Forms

1.1 Dirichlet L-Functions 3
1.2 The Modular Group 17
1.3 Modular Forms for $SL(2, \mathbb{Z})$ 26
1.4 Hecke Operators 41
1.5 Twisting 54
1.6 The Rankin–Selberg Method 65
1.7 Hecke Characters and Hilbert Modular Forms 76
1.8 Artin L-Functions and Langlands Functoriality 90
1.9 Maass Forms 103
1.10 Base Change 119

2 Automorphic Forms and Representations of $GL(2, \mathbb{R})$

2.1 Maass Forms and the Spectral Problem 128
2.2 Basic Lie Theory 145
2.3 Discreteness of the Spectrum 165
2.4 Basic Representation Theory 186
2.5 Irreducible (g, K)-Modules for $GL(2, \mathbb{R})$ 203
2.6 Unitarity and Intertwining Integrals 222
2.7 Representations and the Spectral Problem 241
2.8 Whittaker Models 243
2.9 A Theorem of Harish-Chandra 246
Contents

3 Automorphic Representations

3.1 Tate's Thesis
3.2 Classical Automorphic Forms and Representations
3.3 Automorphic Representations of $GL(n)$
3.4 The Tensor Product Theorem
3.5 Whittaker Models and Automorphic Forms
3.6 Adelization of Classical Automorphic Forms
3.7 Eisenstein Series and Intertwining Integrals
3.8 The Rankin–Selberg Method
3.9 The Global Langlands Conjectures
3.10 The Triple Convolution

4 Representations of $GL(2)$ Over a p-adic Field

4.1 $GL(2)$ Over a Finite Field
4.2 Smooth and Admissible Representations
4.3 Distributions and Sheaves
4.4 Whittaker Models and the Jacquet Functor
4.5 The Principal Series Representations
4.6 Spherical Representations
4.7 Local Functional Equations
4.8 Supercuspidals and the Weil Representation
4.9 The Local Langlands Correspondence

Bibliography
Index