Translations of
MATHEMATICAL MONOGRAPHS

Volume 150

Lectures on Entire Functions

B. Ya. Levin

In collaboration with

Yu. Lyubarskii
M. Sodin
V. Tkachenko

American Mathematical Society
Providence, Rhode Island
Contents

Preface xi

Introduction xv

Part I. Entire Functions of Finite Order 1

Lecture 1. Growth of Entire Functions 3
 1.1. The growth scale for entire functions 3
 1.2. Order and type of entire functions 3
 1.3. The relation between the growth of an entire function and the decrease of the coefficients of its power series expansion 5

Lecture 2. Main Integral Formulas for Functions Analytic in a Disk 9
 2.1. The Poisson formula and the Schwarz formula 9
 2.2. The Poisson-Jensen formula 9
 2.3. The Jensen formula 10
 2.4. The Nevanlinna characteristics 11
 2.5. Some corollaries of the Jensen formula 13

Lecture 3. Some Applications of the Jensen Formula 15
 3.1. A theorem on (f)-quasianalyticity 15
 3.2. The convergence exponent and the upper density of the sequence of zeros 17
 3.3. Completeness of a system of exponential functions 19
 3.4. Completeness of a special system of functions in countably normed spaces 20

Lecture 4. Factorization of Entire Functions of Finite Order 25
 4.1. The Weierstrass canonical product 25
 4.2. The Hadamard theorem 26
 4.3. Estimates for canonical products 28

Lecture 5. The Connection between the Growth of Entire Functions and the Distribution of their Zeros 31
 5.1. Functions of noninteger order 31
 5.2. Functions of integer order 32

Lecture 6. Theorems of Phragmén and Lindelöf 37
 6.1. Functions analytic inside an angle 37
 6.2. Entire functions with values in Banach algebras 40
6.3. Applications of the Phragmén and Lindelöf theorems to Banach algebras

Lecture 7. Subharmonic Functions
7.1. Definition and basic properties 45
7.2. The F. Riesz theorem and the Jensen formula 48
7.3. Phragmén-Lindelöf theorems for subharmonic functions 49
7.4. Logarithmically subharmonic functions 50

Lecture 8. The Indicator Function
8.1. The definition and \(\rho \)-trigonometric convexity of the indicator 53
8.2. Properties of trigonometrically convex functions 55
8.3. Applications of properties of the indicator function 58

Lecture 9. The Pólya Theorem
9.1. Supporting functions of convex sets 63
9.2. The Borel transform and the Pólya theorem 65

Lecture 10. Applications of the Pólya Theorem
10.1. The Paley-Wiener theorem 69
10.2. Analytic continuation of a power series 70
10.3. Analytic functionals 73

Lecture 11. Lower Bounds for Analytic and Subharmonic Functions
11.1. The Carathéodory inequality 75
11.2. The Cartan estimate 76
11.3. Lower bounds for the modulus of an analytic function in a disk 79

Lecture 12. Entire Functions with Zeros on a Ray
12.1. Asymptotic behavior of canonical products 81
12.2. Theorem on a segment on the boundary of the indicator diagram 83
12.3. Lower bound for the canonical product with positive zeros having density 86

Lecture 13. Entire Functions with Zeros on a Ray (Continuation)
13.1. The Valiron theorem 91
13.2. Functions of completely regular growth 94

Part II. Entire Functions of Exponential Type

Lecture 14. Integral Representation of Functions Analytic in the Half-plane
14.1. The R. Nevanlinna formula 99
14.2. Representation of a function \(f(z) \) analytic in the half-plane such that \(\log |f(z)| \) admits a positive harmonic majorant 101
14.3. Application to the theory of quasianalytic classes 105

Lecture 15. The Hayman Theorem 109

Lecture 16. Functions of Class \(C \) and their Applications
16.1. Properties of functions of class \(C \) 115
16.2. The Titchmarsh convolution theorem and a problem of Gelfand 119
16.3. Mean periodic functions 121
Lecture 17. Zeros of Functions of Class C

17.1. The generalized Jensen formula 125
17.2. Asymptotic properties of zeros of functions of class C 126

Lecture 18. Completeness and Minimality of Systems of Exponential Functions in $L^2(a, b)$ 131

Lecture 19. Hardy Spaces in the Upper Half-Plane

19.1. Definition and basic properties 137
19.2. Boundary values of functions of H^p_+ 139
19.3. M. Riesz's theorem on conjugate harmonic functions and the general form of linear functionals in H^p_+ 142
19.4. The Paley-Wiener theorem for H^2_+ 146

Lecture 20. Interpolation by Entire Functions of Exponential Type

20.1. Spaces L^p_σ and B_σ 149
20.2. Interpolation theorem with integer nodes 150
20.3. Interpolation in the spaces L^p_σ, $1 < p < \infty$, with integer nodes 151

Lecture 21. Interpolation by Entire Functions from the Spaces L_σ and B_σ

21.1. Interpolation by functions from B_π and L_π 155
21.2. Interpolation by functions from L^p_σ with $\sigma < \pi$ 160
21.3. Interference in a class of entire functions 162

Lecture 22. Sine-Type Functions

22.1. Interpolation with nodes at the zeros of a sine-type function 163
22.2. Functions whose zeros are close to the integers 166

Lecture 23. Riesz Bases Formed by Exponential Functions in $L^2(-\pi, \pi)$

23.1. Definition and properties of Riesz bases 169
23.2. The 1/4-theorem 172

Appendix. Completeness of the Eigenfunction System of a Quadratic Operator Pencil

A1. Twofold completeness of the system \mathcal{K}_a 181
A2. Completeness of the system \mathcal{K}_a^+ 183

Part III. Some Additional Problems of the Theory of Entire Functions

Lecture 24. The Formulas of Carleman and R. Nevanlinna and their Applications

24.1. The Carleman formula 187
24.2. The Phragmén-Lindelöf principle as formulated by F. and R. Nevanlinna 190
24.3. R. Nevanlinna's formula for a half-disk 192

Lecture 25. Uniqueness Problems for Fourier Transforms and for Infinitely Differentiable Functions

25.1. Uniqueness theorem for Fourier transforms 195
25.2. Construction of entire functions decaying on the real axis 199
25.3. Uniqueness problem of Gelfand and Shilov for infinitely differentiable functions 204
<table>
<thead>
<tr>
<th>Lecture 26. The Matsaev Theorem on the Growth of Entire Functions Admitting a Lower Bound</th>
<th>209</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1. A lower bound for harmonic functions of order greater than one in the upper half-plane</td>
<td>209</td>
</tr>
<tr>
<td>26.2. Refinement of the upper bound</td>
<td>212</td>
</tr>
<tr>
<td>26.3. Proof of Matsaev's theorem</td>
<td>213</td>
</tr>
<tr>
<td>26.4. Entire functions admitting a lower bound for (\rho \leq 1)</td>
<td>214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture 27. Entire Functions of Class (P)</th>
<th>217</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1. Properties of functions of class (P)</td>
<td>217</td>
</tr>
<tr>
<td>27.2. Meromorphic functions with interlacing zeros and poles</td>
<td>220</td>
</tr>
<tr>
<td>27.3. Theorem of Hermite and Biehler for entire functions of exponential type</td>
<td>222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture 28. S. N. Bernstein's Inequality for Entire Functions of Exponential Type and its Generalizations</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1. (P)-majorants</td>
<td>227</td>
</tr>
<tr>
<td>28.2. Operators preserving inequalities</td>
<td>230</td>
</tr>
<tr>
<td>28.3. S. N. Bernstein's inequality and Banach algebras</td>
<td>236</td>
</tr>
</tbody>
</table>

Added in Proof | 238 |

Bibliography | 239 |
Author Index | 245 |
Subject Index | 247 |