WHAT IS

Mathematics?

AN ELEMENTARY APPROACH TO
IDEAS AND METHODS

Second Edition

BY

RICHARD COURANT
Late of the Courant Institute of Mathematical Sciences
New York University

AND

HERBERT ROBBINS
Rutgers University

Revised by

IAN STEWART
Mathematics Institute
University of Warwick

New York
Oxford

OXFORD UNIVERSITY PRESS

1996
CONTENTS

PREFACE TO SECOND EDITION
PREFACE TO REVISED EDITIONS
PREFACE TO FIRST EDITION
HOW TO USE THE BOOK
WHAT IS MATHEMATICS?

CHAPTER I. THE NATURAL NUMBERS ... 1
Introduction ... 1
§1. Calculation with Integers ... 1
 1. Laws of Arithmetic. 2. The Representation of Integers. 3. Computation in Systems Other than the Decimal.
§2. The Infinitude of the Number System. Mathematical Induction 9
 1. The Principle of Mathematical Induction. 2. The Arithmetical Progression. 3. The Geometrical Progression. 4. The Sum of the First \(n \) Squares. 5. An Important Inequality. 6. The Binomial Theorem. 7. Further Remarks on Mathematical Induction.

SUPPLEMENT TO CHAPTER I. THE THEORY OF NUMBERS 21
Introduction ... 21
§1. The Prime Numbers .. 21
§2. Congruences .. 31
§3. Pythagorean Numbers and Fermat's Last Theorem 40
§4. The Euclidean Algorithm ... 42

CHAPTER II. THE NUMBER SYSTEM OF MATHEMATICS 52
Introduction ... 52
§1. The Rational Numbers ... 52
§2. Incommensurable Segments, Irrational Numbers, and the Concept of
 Limit ... 58
 1. Introduction. 2. Decimal Fractions. Infinite Decimals. 3. Limits. Infinite Geometrical Series. 4. Rational Numbers and Periodic Deci-
CONTENTS

§3. Remarks on Analytic Geometry .. 72
1. The Basic Principle. 2. Equations of Lines and Curves.

§4. The Mathematical Analysis of Infinity 77

§5. Complex Numbers ... 88

§6. Algebraic and Transcendental Numbers 103
1. Definition and Existence. 2. Liouville's Theorem and the Construction of Transcendental Numbers.

SUPPLEMENT TO CHAPTER II. THE ALGEBRA OF SETS 108

CHAPTER III. GEOMETRICAL CONSTRUCTIONS. THE ALGEBRA OF NUMBER FIELDS ... 117
Introduction ... 117
Part I. Impossibility Proofs and Algebra 120
§1. Fundamental Geometrical Constructions 120
1. Construction of Fields and Square Root Extraction. 2. Regular Polygons. 3. Apollonius' Problem.

§2. Constructible Numbers and Number Fields 127
1. General Theory. 2. All Constructible Numbers are Algebraic.

§3. The Unsolvability of the Three Greek Problems 134
1. Doubling the Cube. 2. A Theorem on Cubic Equations. 3. Trisecting the Angle. 4. The Regular Heptagon. 5. Remarks on the Problem of Squaring the Circle.

Part II. Various Methods for Performing Constructions 140
§4. Geometrical Transformations. Inversion 140

§5. Constructions with Other Tools. Mascheroni Constructions with Compass Alone ... 146

§6. More About Inversions and its Applications 158

CHAPTER IV. PROJECTIVE GEOMETRY. AXIOMATICS. NON-EUCLIDEAN GEOMETRIES ... 165
§1. Introduction ... 166
CONTENTS

5. Continuity. 6. Functions of Several Variables. 7. Functions and Transformations.

§2. Limits ... 289
1. The Limit of a Sequence a_n. 2. Monotone Sequences. 3. Euler's Number e. 4. The Number π. 5. Continued Fractions.

§3. Limits by Continuous Approach 303
1. Introduction. General Definition. 2. Remarks on the Limit Concept. 3. The Limit of $\sin x/x$. 4. Limits as $x \to \infty$.

§4. Precise Definition of Continuity 310

§5. Two Fundamental Theorems on Continuous Functions 312

§6. Some Applications of Bolzano's Theorem 317

SUPPLEMENT TO CHAPTER VI. MORE EXAMPLES ON LIMITS AND CONTINUITY 322

§1. Examples of limits ... 322
1. General Remarks. 2. The limit of q^n. 3. The limit of $\sqrt[n]{p}$. 4. Discontinuous Functions as Limits of Continuous Functions. 5. Limits by Iteration.

§2. Example on Continuity .. 327

CHAPTER VII. MAXIMA AND MINIMA 329
Introduction ... 329

§1. Problems in Elementary Geometry 330

§2. A General Principal Underlying Extreme Value Problems 338
1. The Principle. 2. Examples.

§3. Stationary Points and the Differential Calculus 341
1. Extrema and Stationary Points. 2. Maxima and Minima of Functions of Several Variables. Saddle Points. 3. Minimax Points and Topology. 4. The Distance from a Point to a Surface.

§4. Schwarz's Triangle Problem 346
1. Schwarz's Proof. 2. Another Proof. 3. Obtuse Triangles. 4. Triangles Formed by Light Rays. 5. Remarks Concerning Problems of Reflection and Ergodic Motion.

§5. Steiner's Problem ... 354
1. Problem and Solution. 2. Analysis of the Alternatives. 3. A Complementary Problem. 4. Remarks and Exercises. 5. Generalization to the Street Network Problem.

§6. Extrema and Inequalities 361
1. The Arithmetical and Geometrical Mean of Two Positive Quantities. 2. Generalization to n Variables. 3. The Method of Least Squares.

CONTENTS

§8. The Isoperimetric Problem ... 373
§9. Extremum Problems with Boundary Conditions. Connection Between Steiner's Problem and the Isoperimetric Problem 376
§10. The Calculus of Variations ... 379

§11. Experimental Solutions of Minimum Problems. Soap Film Experiments ... 385

1. Introduction. 2. Soap Film Experiments. 3. New Experiments on Plateau's Problem. 4. Experimental Solutions of Other Mathematical Problems.

CHAPTER VIII. THE CALCULUS ... 398

Introduction ... 398

§1. The Integral ... 399

1. Area as a Limit. 2. The Integral. 3. General Remarks on the Integral Concept. General Definition. 4. Examples of Integration. Integration of x^r. 5. Rules for the "Integral Calculus"

§2. The Derivative .. 414

§3. The Technique of Differentiation ... 427

§4. Leibniz' Notation and the "Infinitely Small" .. 433

§5. The Fundamental Theorem of the Calculus 436

1. The Fundamental Theorem. 2. First Applications. Integration of x^r, cos x, sin x, Arc tan x. 3. Leibniz' Formula for π

§6. The Exponential Function and the Logarithm 442

1. Definition and Properties of the Logarithm. Euler's Number e. 2. The Exponential Function. 3. Formulas for Differentiation of e^x, a^x, x^x. 4. Explicit Expressions for e, e^x, and log x as Limits. 5. Infinite Series for the Logarithm. Numerical Calculation.

§7. Differential Equations .. 453

SUPPLEMENT TO CHAPTER VIII ... 462

§1. Matters of Principle .. 462

1. Differentiability. 2. The Integral. 3. Other Applications of the Concept of Integral. Work. Length.

§2. Orders of Magnitude ... 469

1. The Exponential Function and Powers of x. 2. Order of Magnitude of log $(n!)$.
CONTENTS

§3. Infinite Series and Infinite Products .. 472
 1. Infinite Series of Functions. 2. Euler's Formula, \(\cos x + i \sin x = e^{ix} \). 3. The Harmonic Series and the Zeta Function. Euler's Product for the Sine.

§4. The Prime Number Theorem Obtained by Statistical Methods 482

CHAPTER IX. RECENT DEVELOPMENTS ... 487

§1. A Formula for Primes ... 487
§2. The Goldbach Conjecture and Twin Primes 488
§3. Fermat's Last Theorem .. 491
§4. The Continuum Hypothesis .. 493
§5. Set-Theoretic Notation .. 494
§6. The Four Color Theorem .. 495
§7. Hausdorff Dimension and Fractals .. 499
§8. Knots ... 501
§9. A Problem in Mechanics .. 505
§10. Steiner's Problem ... 507
§11. Soap Films and Minimal Surfaces ... 513
§12. Nonstandard Analysis ... 518

APPENDIX: SUPPLEMENTARY REMARKS, PROBLEMS, AND EXERCISES 525

Arithmetic and Algebra ... 525
Analytic Geometry ... 526
Geometrical Constructions ... 532
Projective and Non-Euclidean Geometry 533
Topology ... 534
Functions, Limits, and Continuity .. 537
Maxima and Minima .. 538
The Calculus ... 540
Technique of Integration .. 542

SUGGESTIONS FOR FURTHER READING ... 549
SUGGESTIONS FOR ADDITIONAL READING 553

INDEX ... 559