Contents

Preface ... v

1 Origins of Quantum Groups 1
 1.1 Quantum Inverse Scattering Method 2
 1.2 Applications of Quantum Groups 5
 1.3 Special Functions and Quantum Groups 7
 1.4 Definition of Quantum Group 11

2 Representations of Unitary Quantum Groups 15
 2.1 The Prototype for Quantum Groups: \(\mathcal{U}_q(su(2)) \) 16
 2.1.1 Co-Algebra Structure 17
 2.2 Irreducible Unitary Representations of \(\mathcal{U}_q(su(2)) \) ... 19
 2.3 The Jordan Map and Unitary Symmetry 24
 2.4 The \(q \)-Generalization of the Boson Calculus 26
 2.4.1 Realizations of \(q \)-Boson Operators 29
 2.4.2 The \(q \)-Boson Realization of \(\mathcal{U}_q(su(2)) \) Unitary Irreps 33
 2.4.3 Realization on a Projective Space 35
 2.4.4 Mixed Symmetry States and Irreps of \(\mathcal{U}_q(u(2)) \) 40
 2.5 Irreducible Unitary Representations of \(\mathcal{U}_q(u(n)) \) 43
 2.5.1 The \(q \)-Boson Construction for \(\mathcal{U}_q(u(n)) \) 49
 2.6 Appendix: Gel'fand-Weyl States and Young Frames 50
 2.7 Appendix: Properties of \(q \)-Numbers 55
 2.7.1 Symmetries and Identities of \(q \)-Numbers 57
 2.7.2 The \(q \)-Binomial Theorem 60
 2.8 Appendix: \(q \)-Calculus and \(q \)-Functions 63
 2.8.1 \(q \)-Derivation and Integration 63
 2.8.2 The \(q \)-Exponential Function 64
 2.8.3 Basic Hypergeometric Functions 67
3 Tensor Operators in Quantum Groups

3.1 Introduction .. 71

3.2 Classical Theory of Tensor Operators 73

3.2.1 The Classification Problem for Tensor Operators 76

3.2.2 Operator Patterns and the Characteristic Null Space 77

3.3 Tensor Operators in Quantum Groups 81

3.4 The Algebra of q-Tensor Operators 85

3.4.1 $U_q(su(2))$ q-Tensor Operators and Coupling Coefficients 86

3.4.2 Examples of q-Tensor Operators in $U_q(su(2))$ 89

3.4.3 $U_q(u(n))$ q-Tensor Operators 93

3.5 q-Wigner-Clebsch-Gordan Coefficients 94

3.5.1 Special Cases of q-Wigner-Clebsch-Gordan Coefficients 96

3.5.2 Symmetries of q-Wigner-Clebsch-Gordan Coefficients 99

3.6 q-$6j$ and q-Racah Coefficients 102

3.6.1 Asymptotic limit of the q-$6j$ symbol 105

3.7 The Pattern Calculus and Elementary Tensor Operators 107

3.7.1 The Pattern Calculus Rules for Elementary q-Tensor Operators 109

3.7.2 A Conceptual Derivation of the Pattern Calculus Rules 113

4 The Dual Algebra and the Factor Group

4.1 Introduction .. 115

4.2 Matrix Quantum Groups 117

4.2.1 The n-Dimensional Matrix Quantum Groups 120

4.2.2 Noncommuting q-Coordinates and the Quantum Plane 121

4.3 The Classical Unitary Factor Groups 124

4.3.1 The $U(2)$ Factor Group and the Rotation Matrices ... 132

4.4 Extension to the Quantum Factor Algebra 134

4.4.1 Basis Polynomials in an Irrep of the Quantum Factor Algebra 139

4.4.2 Derivation of q-WCG Coefficients 141

4.5 Commutation Rules for Elements of the Quantum Matrix 144

4.5.1 Generalization to the Quantum Hyperplane 148

4.6 A q-Boson Realization of Noncommuting Elements 148

4.7 Irreps of the Matrix Quantum Group 153

4.7.1 Fractional Linear Transformations 154
5 Quantum Rotation Matrices

5.1 Fundamental Properties of the Quantum Rotation Matrices 158
5.1.1 Special Cases ... 161
5.2 Generating Function .. 162
5.2.1 Symmetries of the Quantum Rotation Matrix 164
5.3 Tensor Operator Properties of the Quantum Rotation Matrices .. 165
5.4 The Wigner Product Law 166

6 Quantum Groups at Roots of Unity

6.1 The Special Linear Quantum Group for \(q \) a Root of Unity 170
6.1.1 Invariants of \(U_q(\mathfrak{sl}(2)) \) at Roots of Unity 173
6.1.2 Irreducible Nilpotent Representations of \(U_q(\mathfrak{su}(2)) \) ... 175
6.2 Irreducible Cyclic Representations of \(U_q(\mathfrak{su}(2)) \) 178
6.2.1 Unitary Cyclic Representations of \(U_q(\mathfrak{su}(2)) \) 181
6.2.2 Factorized Matrix Elements 184
6.2.3 Analytic Extension of \(U(2) \) Representations 188
6.3 \(q \)-Boson Operator Construction of Representations 189
6.3.1 Cyclic Representations for Even \(p \) 195
6.4 Hermitean Adjoints of \(q \)-Boson Operators 196
6.5 Cyclic \(q \)-Boson Operators in a Fock Space 200
6.5.1 Unitary Cyclic Representations in a Fock Space 203
6.6 Cyclic Representations in a Space of Polynomials 204
6.7 Algebraic Induction at Roots of Unity 206

7 Algebraic Induction of Quantum Group Representations

7.1 Introduction and Summary 209
7.2 The Algebraic Borel-Weil Construction 210
7.3 Algebraic Induction for the Classical Group \(U(2) \) 212
7.4 Algebraic Induction for the Quantum Group \(U_q(\mathfrak{u}(2)) \) 215
7.5 The Algebraic Induction Construction for the Classical Unitary Groups 218
7.6 Extension of Algebraic Induction to the Unitary Quantum Groups ... 223
7.6.1 The Isomorphism of Quantum Group Algebras 229
7.6.2 An Alternative Form for the Induced Irrep Vectors 234
7.7 Algebraic Induction for \(U(3) \) and its Quantum Extension 236
7.7.1 Explicit Induced Vectors for \(U(3) \) 236
7.7.2 Algebraic Induction for $\mathcal{U}_q(u(3))$ 242

7.7.3 Explicit Induced Vectors for $\mathcal{U}_q(u(3))$ 245

7.7.4 Basic Hypergeometric Functions and Watson’s Formula 247

7.8 Appendix: The Construction of Tensor Operators in the Classical Unitary Groups $U(n)$... 250

8 Special Topics .. 253

8.1 The q-Harmonic Oscillator .. 254

8.1.1 q-Coherent States .. 255

8.2 Physical Interpretation of Noncommuting Coordinates 257

8.3 Group Invariance of the Canonical Commutation Relations 260

8.3.1 Weyl-Ordered Polynomials and the Symplecton 261

8.3.2 The q-Symplecton .. 267

Bibliography .. 275

Index ... 290