Lectures on
Finite Precision
Computations

Françoise Chaitin-Chatelin
University Paris IX Dauphine, CEREMADE and CERFACS
Toulouse, France

Valérie Frayssé
CERFACS
Toulouse, France

SIAM
Society for Industrial and Applied Mathematics
Philadelphia
Contents

Foreword xi
Preface xiii
Notation xv

1 General Presentation 1

1.1 Coupling 1
1.2 Chaotic computations 2
1.3 Computability in finite precision 2
1.4 Numerical quality of computations 2
1.5 Role of singularities 3
1.6 Spectral instability and nonnormality 3
1.7 Influence on numerical software 4
1.8 Qualitative computing 4
1.9 Experimental mathematics 5
1.10 Sense of errors: For a rehabilitation of finite precision computations 5

2 Computability in Finite Precision 7

2.1 Well-posed problems 7
2.2 Approximations 8
2.3 Convergence in exact arithmetic 8
2.4 Computability in finite precision 11
2.5 Gaussian elimination 15
2.6 Forward error analysis 17
2.7 The influence of singularities 24
2.8 Numerical stability in exact arithmetic 27
2.9 Computability in finite precision for iterative and approximate methods 28
2.10 The limit of numerical stability in finite precision 30
2.11 Arithmetically robust convergence 31
2.12 The computed logistic 33
2.13 Bibliographical comments 37
3 Measures of Stability for Regular Problems 39
3.1 Choice of data and class of perturbations 40
3.2 Choice of norms: Scaling 40
3.3 Conditioning of regular problems 43
3.4 Simple roots of polynomials 45
3.5 Factorizations of a complex matrix 48
3.6 Solving linear systems 49
3.7 Functions of a square matrix 52
3.8 Concluding remarks ... 55
3.9 Bibliographical comments 56

4 Computation in the Neighbourhood of a Singularity 57
4.1 Singular problems that are well posed 57
4.2 Condition numbers of Hölder singularities 58
4.3 Computability of ill-posed problems 60
4.4 Singularities of $z \mapsto A - zI$ 60
4.5 Distances to singularity 65
4.6 Unfolding of singularity 69
4.7 Spectral portraits .. 69
4.8 Bibliographical comments 70

5 Arithmetic Quality of Reliable Algorithms 71
5.1 Forward and backward analyses 71
5.2 Backward error ... 71
5.3 Quality of reliable software 72
5.4 Formulae for backward errors 74
5.5 Influence of the class of perturbations 78
5.6 Iterative refinement for backward stability 82
5.7 Robust reliability and arithmetic quality 84
5.8 Bibliographical comments 85

6 Numerical Stability in Finite Precision 87
6.1 Iterative and approximate methods 87
6.2 Numerical convergence of iterative solvers 87
6.3 Stopping criteria in finite precision 89
6.4 Robust convergence ... 91
6.5 The computed logistic revisited 94
6.6 Care of use .. 95
6.7 Bibliographical comments 96

7 Software Tools for Round-off Error Analysis in Algorithms 97
7.1 A historical perspective 97
7.2 Assessment of the quality of numerical software 98
7.3 Backward error analysis in libraries 99
7.4 Sensitivity analysis ... 99
7.5 Interval analysis .. 100
CONTENTS

7.6 Probabilistic models .. 100
7.7 Computer algebra ... 102
7.8 Bibliographical comments 102

8 The Toolbox PRECISE for Computer Experimentation 103
8.1 What is PRECISE? ... 104
8.2 Module for backward error analysis 105
8.3 Sample size .. 114
8.4 Backward analysis with PRECISE 115
8.5 Dangerous border and unfolding of a singularity 120
8.6 Summary of module 1 123
8.7 Bibliographical comments 124

9 Experiments with PRECISE 125
9.1 Format of the examples 125
9.2 Backward error analysis for linear systems 126
9.3 Computer unfolding of singularity 136
9.4 Dangerous border and distance to singularity 140
9.5 Roots of polynomials 144
9.6 Eigenvalue problems 150
9.7 Conclusion .. 157
9.8 Bibliographical comments 157

10 Robustness to Nonnormality 159
10.1 Nonnormality and spectral instability 159
10.2 Nonnormality in physics and technology 164
10.3 Convergence of numerical methods in exact arithmetic .. 166
10.4 Influence on numerical software 167
10.5 Bibliographical comments 173

11 Qualitative Computing 175
11.1 Sensitivity of pseudosolutions for $F(x) = y$ 176
11.2 Pseudospectra of matrices 177
11.3 Pseudozeros of polynomials 182
11.4 Divergence portrait for the complex logistic iteration ... 188
11.5 Qualitative assessment of a Jordan form 189
11.6 Beyond linear perturbation theory 194
11.7 Bibliographical comments 197

12 More Numerical Illustrations with PRECISE 199

Annex: The Toolbox PRECISE with PRECISE 211

Bibliography ... 219

Index .. 233