CONTENTS

Preface xi

1 The Main Field 1
 1.1 A Whirlwind Tour 1
 1.2 History 2
 1.3 Spatial Variations 5
 1.4 Time Variations 8

2 Classical Electrodynamics 15
 2.1 Helmholtz’s Theorem and Maxwell’s Equations 15
 2.2 A Simple Solution: The Static Case 17
 2.3 Maxwell’s Equations in a Polarized Medium 23
 2.4 On Judicious Neglect of Terms in Equations 29
 2.5 Internal and External Fields 35
 2.6 Solving Maxwell’s Equations as an Initial Value Problem 37

3 Spherical Harmonics 41
 3.1 Completeness on $S(1)$ 42
 3.1.1 Homogeneous and Harmonic Polynomials 42
 3.1.2 The Laplacian of a Certain Homogeneous Polynomial 44
 3.1.3 An Expansion in Harmonic Polynomials 46
 3.2 Orthogonality in \mathcal{P}_ℓ 48
 3.3 The Self-Reproducing Kernel on \mathcal{H}_ℓ 54
 3.3.1 Inner Product Spaces 54
 3.3.2 Inner Products and Linear Functionals 56
 3.3.3 A Special Linear Functional on \mathcal{H}_ℓ 57
 3.3.4 A Rotational Symmetry of \bar{q}_ℓ 59
 3.3.5 Properties of Q_ℓ 61
 3.4 An Orthonormal Basis for \mathcal{H}_ℓ 64
 3.4.1 Application of the Surface Curl, \mathbf{A} 65
3.4.2 Lifting and Lowering Operators .. 70
3.4.3 Explicit Expressions of a Basis .. 75
3.4.4 Normalizing the Natural Basis .. 78
3.5 Axisymmetric Spherical Harmonics 81
3.5.1 Behavior Near the \(z \) Axis ... 82
3.5.2 Calculating the Kernel Function 83
3.5.3 The Generating Function for Legendre Polynomials 84
3.5.4 Green’s Function for \(\nabla^2 \) ... 87
3.6 The Character of the Natural Basis 88
3.6.1 Nodal Lines of \(\text{Re} \ Y^m_\ell(\hat{\mathbf{r}}) \) on \(S(1) \) 88
3.6.2 General Appearance of \(Y^m_\ell \) for large \(\ell \) 91
3.6.3 Horizontal Wavelength of \(Y^m_\ell \) 101
3.7 Numerical Calculations and the Like 104
3.7.1 Explicit Formulas for \(P^m_\ell(\mu) \) 104
3.7.2 Three-Term Recurrence Relationships 106
3.7.3 Numerical Calculations .. 112

4 Gauss’ Theory of the Main Field ... 119
4.1 Finding All the Harmonics in a Shell 119
4.2 Uniqueness of the Coefficients ... 123
4.3 Observing the Sources in Principle 128
4.4 Measuring the Gauss Coefficients 136
 4.4.1 Nonuniqueness of Fields Based on Total Field Observations 138
 4.4.2 The Spectrum .. 138
 4.4.3 Crustal Signals .. 150
 4.4.4 Inferences about the Field on the Core:
 Averaging Kernels .. 153

5 The Mie Representation ... 161
5.1 The Helmholtz Representation Theorem 161
 5.1.1 Solving the Surface Form of Poisson’s Equation 161
 5.1.2 Integral Form of the Solution 163
 5.1.3 The Helmholtz Representation Theorem on \(S(r) \) and \(S(a,b) \) 167
 5.1.4 Divergence and Curl in the Helmholtz Representation 169
5.2 The Mie Representation of Vector Fields 173
 5.2.1 Solenoidal Vector Fields .. 173
 5.2.2 Poloidal and Toroidal Fields 177
5.2.3 Continuity of the Mie Scalars 179
5.2.4 Summary 181
5.3 Application to Sources 182
 5.3.1 Mie Sources of a Magnetic Field 183
 5.3.2 Internal and External Fields: A Complication 185
 5.3.3 Separation of Poloidal Fields 188
 5.3.4 The Generalization of Gauss' Resolution 189
5.4 Induction in the Mantle and the Core 192
 5.4.1 Equations for the Mie Scalars 192
 5.4.2 Application of Boundary Conditions:
 Toroidal Field 195
 5.4.3 Application of Boundary Conditions:
 Magnetic Sounding 196
 5.4.4 Free Decay of Fields in the Core 200
5.5 Ohmic Heating in the Core 204
6 Hydromagnetics of the Core 211
 6.1 The Bullard Disk Dynamo 213
 6.2 Hydromagnetics in an Ohmic Conductor 217
 6.2.1 Ohm's Law for a Moving Conductor 219
 6.2.2 Equations Governing the Geodynamo 224
 6.2.3 The Kinematic Problem:
 Limiting Case with \(u = 0 \) 226
 6.2.4 Eulerian and Lagrangian Descriptions 228
 6.2.5 The Kinematic Problem:
 Limiting Case with \(\eta = 0 \) 231
 6.2.6 Frozen-Flux Condition 235
 6.3 Some Simple Dynamic Problems 239
 6.3.1 The Maxwell Stress Tensor 240
 6.3.2 Sunspots 243
 6.3.3 Alfvén Waves 243
 6.4 Application of Perfect Conductor Theory to the Core 247
 6.4.1 The Hypothesis of Roberts and Scott 247
 6.4.2 Null-Flux Curves 254
 6.5 Kinematic Dynamos 260
 6.5.1 Cowling's Theorem 262
 6.5.2 Elsasser; Blackett and Runcorn;
 Bullard and Gellman 267
 6.5.3 Rigorous Dynamos 272
 6.5.4 Early Numerical Dynamos 276
 6.5.5 Mean Field Dynamos 276
6.6 The Dynamics of Dynamos 285
 6.6.1 The Taylor Theorem 285
 6.6.2 Bullard Dynamo, Poincaré–Bendixson Theorem, and Chaos 286
 6.6.3 Data Possibly Relevant to the Dynamics 286

7 Appendix: Mathematical Background 291
 7.1 Linear Algebra 291
 7.1.1 Arrays 291
 7.1.2 Index Conventions 292
 7.1.3 Properties of the Kronecker Delta and the Alternator 293
 7.1.4 Applications of Delta and the Alternator to Vector Algebra 296
 7.2 Vector Analysis: Differential Calculus 298
 7.2.1 Scalar and Vector Fields 298
 7.2.2 Scalar Linear Operators 299
 7.2.3 Sums and Products of Scalar Linear Operators 301
 7.2.4 Scalar Linear Operators Acting on Vector Fields 303
 7.2.5 Vector Linear Operators 304
 7.2.6 Linear Combinations of Vector Linear Operators 306
 7.2.7 Products of Vector Linear Operators 306
 7.2.8 Dot and Cross Products of Vector Linear Operators 309
 7.2.9 FODOs 312
 7.2.10 Arithmetic with FODOs 314
 7.2.11 Commutation 316
 7.2.12 An Important FODO and Its Commutation Properties 317
 7.2.13 Curvilinear Coordinates and ∇ 320
 7.2.14 Spherical Polar Coordinates 322
 7.3 Vector Analysis: Integral Calculus 328
 7.3.1 The Theorems of Stokes and Gauss 328
 7.3.2 Jump Discontinuities 331
 7.3.3 Sources of a Vector Field 332
 7.4 Scalar and Vector Fields on Orientable Surfaces 334
 7.4.1 Projection of a Vector onto a Plane 334
 7.4.2 Vector Fields on an Oriented Surface 336
 7.4.3 Surface Gradient and Normal Derivative 336
 7.4.4 Surface Curl 339
7.4.5 Applying the FODOs ∇_S and Δ_S to Vector Fields on S 340
7.4.6 Surface Forms of the Theorems of Gauss and Stokes 343
7.4.7 Representation of Tangent Vector Fields 346

References 351

Index 361