Contents

Preface to the Third Edition v
Preface to the Second Edition vii
Preface to the First Edition ix

1 Introduction 1
 References 4

2 The Earth as a Microbial Habitat 7
 2.1 Geologically Important Features 7
 2.2 The Biosphere 14
 2.3 Summary 16
 References 17

3 The Origin of Life and Its Early History 20
 3.1 The Beginnings 20
 3.2 Evolution of Life Through the Precambrian:
 Biological and Biochemical Benchmarks 26
 3.3 The Evidence 34
 3.4 Summary 39
 References 41
4 The Lithosphere as a Microbial Habitat 46
 4.1 Rock and Minerals 46
 4.2 Mineral Soil 48
 4.3 Organic Soils 62
 4.4 Summary 63
 References 64

5 The Hydrosphere 67
 5.1 The Oceans 67
 5.2 Freshwater Lakes 89
 5.3 Rivers 95
 5.4 Groundwaters 97
 5.5 Summary 100
 References 102

6 Geomicrobial Processes: A Physiological and Biochemical Overview 108
 6.1 Types of Geomicrobial Agents 108
 6.2 Geomicrobiically Important Physiological Groups of Prokaryotes 111
 6.3 Role of Microbes in Inorganic Conversions in the Lithosphere and Hydrosphere 111
 6.4 Types of Microbial Activities Influencing Geological Processes 112
 6.5 Microbes as Catalysts of Geochemical Processes 113
 6.6 Microbial Mineralization of Organic Matter 132
 6.7 Production of Microbial Products that Can Cause Geomicrobial Transformation 134
 6.8 Physical Parameters that Influence Geomicrobial Activity 135
 6.9 Summary 137
 References 138

7 Methods in Geomicrobiology 143
 7.1 Detection and Isolation of Geomicrobiially Active Organisms 145
 7.2 In Situ Study of Past Geomicrobial Activity 155
 7.3 In Situ Study of Ongoing Geomicrobial Activity 156
 7.4 Laboratory Reconstruction of Geomicrobial Processes in Nature 158
7.5 Quantitative Study of Growth on Surfaces 164
7.6 Test for Distinguishing Between Enzymatic and Nonenzymatic Geomicrobial Activity 166
7.7 Study of Reaction Products of a Geomicrobial Transformation 166
7.8 Summary 167
References 167

8 Microbial Formation and Degradation of Carbonates 172
8.1 Distribution of Carbon in the Earth’s Crust 172
8.2 Biological Carbonate Deposition 174
8.3 Biodegradation of Carbonates 199
8.4 Biological Carbonate Formation and Degradation and the Carbon Cycle 206
8.5 Summary 208
References 209

9 Geomicrobial Interactions with Silicon 217
9.1 Distribution and Some Chemical Properties 217
9.2 Biologically Important Properties of Silicon and Its Compounds 219
9.3 Bioconcentration of Silicon 221
9.4 Biomobilization of Silicon 226
9.5 Role of Microbes in the Silicon Cycle 232
9.6 Summary 233
References 234

10 Geomicrobial Interactions with Phosphorus 241
10.1 Biological Importance of Phosphorus 241
10.2 Occurrence in Earth’s Crust 242
10.3 Conversion of Organic into Inorganic Phosphorus and the Synthesis of Phosphate Esters 242
10.4 Assimilation of Phosphorus 244
10.5 Microbial Solubilization of Phosphate Minerals 245
10.6 Microbial Phosphate Immobilization 247
10.7 Microbial Reduction of Oxidized Forms of Phosphorus 252
10.8 Microbial Oxidation of Reduced Forms of Phosphorus 254
10.9 Microbial Role in the Phosphorus Cycle 255
10.10 Summary

References

11 Geomicrobially Important Interactions with Nitrogen

11.1 Nitrogen in the Biosphere

11.2 Microbial Interactions with Nitrogen

11.3 Microbial Role in the Nitrogen Cycle

11.4 Summary

References

12 Geomicrobial Interactions with Arsenic and Antimony

12.1 Arsenic

12.2 Antimony

12.3 Summary

References

13 Geomicrobiology of Mercury

13.1 Distribution of Mercury in the Earth’s Crust

13.2 Anthropogenic Mercury

13.3 Mercury in the Environment

13.4 Specific Microbial Interactions with Mercury

13.5 Genetic Control of Mercury Transformations

13.6 Environmental Significance of Microbial Mercury Transformations

13.7 A Mercury Cycle

13.8 Summary

References

14 Geomicrobiology of Iron

14.1 Iron Distribution in the Earth’s Crust

14.2 Geochemically Important Properties

14.3 Biological Importance of Iron

14.4 Iron as Energy Source for Bacteria

14.5 Iron(III) as Terminal Electron Acceptor in Bacterial Respiration

14.6 Nonenzymatic Oxidation and Reduction of Ferric Iron by Microbes

14.7 Microbial Precipitation of Iron

14.8 The Concept of Iron Bacteria
14.9 Sedimentary Iron Deposits of Putative Biogenic Origin 359
14.10 Microbial Mobilization of Iron from Minerals in Ore, Soil, and Sediments 363
14.11 Microbes and the Iron Cycle 364
14.12 Summary 366
References 367

15 Geomicrobiology of Manganese 389
15.1 Occurrence of Manganese in the Earth’s Crust 389
15.2 Geochemically Important Properties of Manganese 390
15.3 Biological Importance of Manganese 391
15.4 Manganese-Oxidizing and -Reducing Bacteria and Fungi 391
15.5 Biooxidation of Manganese 396
15.6 Bioreduction of Manganese 406
15.7 Bioaccumulation of Manganese 416
15.8 Microbial Manganese Deposition in Soil and on Rocks 420
15.9 Microbial Manganese Deposition in Freshwater Environments 426
15.10 Microbial Manganese Deposition in Marine Environments 434
15.11 Microbial Mobilization of Manganese in Soils and Ores 454
15.12 Microbial Mobilization of Manganese in Freshwater Environments 456
15.13 Microbial Mobilization of Manganese in Marine Environments 457
15.14 Microbial Manganese Reduction and Mineralization of Organic Matter 460
15.15 Microbial Role in the Manganese Cycle in Nature 460
15.16 Summary 464
References 465

16 Geomicrobial Interactions with Chromium, Molybdenum, Vanadium, and Uranium 490
16.1 Microbial Interactions with Chromium 490
16.2 Microbial Interaction with Molybdenum 497
16.3 Microbial Interaction with Vanadium 498
16.4 Microbial Interaction with Uranium 499
16.5 Summary 501
References 502

17 Geomicrobiology of Sulfur 508
17.1 Occurrence of Sulfur in the Earth’s Crust 508
17.2 Geochemically Important Properties of Sulfur 508
17.3 Biological Importance of Sulfur 510
17.4 Mineralization of Organic Sulfur Compounds 510
17.5 Sulfur Assimilation 511
17.6 Geomicrobiologically Important Types of Bacteria that React with Sulfur and Sulfur Compounds 512
17.7 Physiology and Biochemistry of Microbial Oxidation of Reduced Forms of Sulfur 521
17.8 Autotrophic and Mixotrophic Growth on Reduced Forms of Sulfur 530
17.9 Anaerobic Respiration Using Oxidized Forms of Sulfur as Electron Receptors 534
17.10 Autotrophy, Mixotrophy, and Heterotrophy Among Sulfate-Reducing Bacteria 541
17.11 Biodeposition of Native Sulfur 543
17.12 Microbial Role in the Sulfur Cycle 557
17.13 Summary 558
References 559

18 Biogenesis and Biodegradation of Sulfide Minerals on the Earth’s Surface 578
18.1 Introduction 578
18.2 Natural Origins of Metal Sulfides 578
18.3 Principles of Metal Sulfide Formation 582
18.4 Laboratory Evidence in Support of Biogenesis of Metal Sulfides 584
18.5 Biooxidation of Metal Sulfides 587
18.6 Bioextraction of Metal Sulfide Ores by Complexation 594
18.7 Bioleaching of Metal Sulfide and Uraninite Ores 595
18.8 Formation of Acid Coal-Mine Drainage 602
18.9 Summary 604
References 605

19 Geomicrobiology of Selenium and Tellurium 615
19.1 Occurrence in the Earth’s Crust 615
19.2 Biological Importance 615
Contents

19.3 Toxicity of Selenium and Tellurium Compounds 616
19.4 Biooxidation of Reduced Forms of Selenium 617
19.5 Bioreduction of Oxidized Selenium Compounds 618
19.6 Selenium Cycle 621
19.7 Biooxidation of Reduced Forms of Tellurium 622
19.8 Bioreduction of Oxidized Forms of Tellurium 622
19.9 Summary 622
References 623

20 Geomicrobiology of Fossil Fuels 627

20.1 Introduction 627
20.2 Natural Abundance of Fossil Fuels 628
20.3 Methane 628
20.4 Peat 642
20.5 Coal 645
20.6 Petroleum 650
20.7 Summary 661
References 663

Glossary 681
Index 697