Contents

Preface xv

1 Propositional Calculus 1
 1.1 Logical Arguments and Propositions 1
 1.1.1 Introduction 1
 1.1.2 Some Important Logical Arguments 2
 1.1.3 Propositions 4
 1.2 Logical Connectives 6
 1.2.1 Introduction 6
 1.2.2 Negation 6
 1.2.3 Conjunction 7
 1.2.4 Disjunction 8
 1.2.5 Conditional 9
 1.2.6 Biconditional 11
 1.2.7 Further Remarks on Connectives 12
 1.3 Compound Propositions 13
 1.3.1 Introduction 13
 1.3.2 Logical Expressions 13
 1.3.3 Analysis of Compound Propositions 15
 1.3.4 Precedence Rules 18
 1.3.5 Evaluation of Expressions and Truth Tables 19
 1.3.6 Examples of Compound Propositions 21
 1.4 Tautologies and Contradictions 23
 1.4.1 Introduction 23
 1.4.2 Tautologies 24
2.4 Logical Equivalences 92
 2.4.1 Introduction 92
 2.4.2 Basic Logical Equivalences 92
 2.4.3 Other Important Equivalences 94

2.5 Equational Logic 96
 2.5.1 Introduction 96
 2.5.2 Equality 96
 2.5.3 Equality and Uniqueness 99
 2.5.4 Functions and Equational Logic 100
 2.5.5 Function Compositions 103
 2.5.6 Properties of Operators 105
 2.5.7 Identity and Zero Elements 108
 2.5.8 Derivations in Equational Logic 111
 2.5.9 Equational Logic in Practice 113
 2.5.10 Boolean Algebra 115

3 Induction and Recursion 121
 3.1 Induction on Natural Numbers 122
 3.1.1 Introduction 122
 3.1.2 Natural Numbers 123
 3.1.3 Mathematical Induction 124
 3.1.4 Induction for Proving Properties of Addition 128
 3.1.5 Changing the Induction Base 130
 3.1.6 Strong Induction 131
 3.2 Sums and Related Constructs 132
 3.2.1 Introduction 132
 3.2.2 Recursive Definitions of Sums and Products 133
 3.2.3 Identities Involving Sums 135
 3.2.4 Double Sums and Matrices 139
 3.3 Proof by Recursion 141
 3.3.1 Introduction 141
 3.3.2 Recursive Definitions 143
 3.3.3 Descending Sequences 146
 3.3.4 The Principle of Proofs by Recursion 147
 3.3.5 Structural Induction 149
 3.4 Applications of Recursion to Programming 154
 3.4.1 Introduction 154
 3.4.2 Programming as Function Composition 154
 3.4.3 Recursion in Programs 158
 3.4.4 Programs Involving Trees 163
 3.5 Recursive Functions 166
 3.5.1 Introduction 166
 3.5.2 Primitive Recursive Functions 168
3.5.3 Programming and Primitive Recursion 172
3.5.4 Minimalization 173

4 Prolog 178

4.1 Basic Prolog 178
1. Introduction 178
2. Facts, Rules, and Queries 179
3. Derivations Involving Facts 181
4. Derivations Involving Rules 183
5. Instantiations and Unification 186
6. Backtracking 188
7. Resolution 190

4.2 Running and Testing Programs 193
1. Introduction 193
2. Prolog Compilers and Interpreters 194
3. Consulting a Database 194
4. Debugging and Tracing 196

4.3 Additional Features of Prolog 197
1. Introduction 197
2. Input and Output 197
3. Structures 198
4. Infix Notation 199
5. Arithmetic 200
6. Equality Predicates 201

4.4 Recursion 203
1. Introduction 203
2. Recursive Predicates 204
3. Termination 205
4. Loops and Prolog 207
5. Lists 208
6. Recursive Predicates Involving Lists 210
7. Successive Refinement 213

4.5 Negation in Prolog 215
1. Introduction 215
2. Prolog as a Logic Language 215
3. Negation as Failure 218
4. Use of the Clause Order 219
5. Cuts 220

4.6 Application of Prolog to Logic 222
1. Introduction 222
2. Lists as Logical Expressions 222
3. Representing Logical Expressions as Structures 224
5 Sets and Relations 230
5.1 Sets and Set Operations 230
 5.1.1 Introduction 230
 5.1.2 Sets and Their Members 231
 5.1.3 Subsets 233
 5.1.4 Intersections 235
 5.1.5 Unions 236
 5.1.6 Differences and Complements 237
 5.1.7 Expressions Involving Sets 239
5.2 Tuples, Sequences, and Powersets 243
 5.2.1 Introduction 243
 5.2.2 Tuples and Cartesian Products 244
 5.2.3 Sequences and Strings 246
 5.2.4 Powersets 247
 5.2.5 Types and Signatures 248
5.3 Relations 251
 5.3.1 Introduction 251
 5.3.2 Relations and Their Representation 252
 5.3.3 Domains and Ranges 254
 5.3.4 Some Operations on Relations 255
 5.3.5 Composition of Relations 257
 5.3.6 Examples 261
5.4 Properties of Relations 263
 5.4.1 Introduction 263
 5.4.2 Relations on a Set 263
 5.4.3 Reflective Relations 264
 5.4.4 Symmetric Relations 266
 5.4.5 Transitivity 267
 5.4.6 Closures 269
 5.4.7 Equivalence Relations 270
 5.4.8 Partial Orders 272

6 More About Functions 281
6.1 Representations and Manipulations Involving Functions 281
 6.1.1 Introduction 281
 6.1.2 Definitions and Notation 282
 6.1.3 Representations of Functions 285
 6.1.4 The Lambda Notation 286
 6.1.5 Restrictions and Overloading 287
 6.1.6 Composition of Functions 289
 6.1.7 Injections, Surjections, and Inverses 292
 6.1.8 Creating Inverses by Creating Types 296
6.2 Enumerations, Isomorphisms, and Homomorphisms 299
- 6.2.1 Introduction 299
- 6.2.2 Enumerations 300
- 6.2.3 Countable and Uncountable Sets 302
- 6.2.4 Permutations and Combinations 305
- 6.2.5 Isomorphisms and Homomorphisms 307

6.3 Computational Complexity 311
- 6.3.1 Introduction 311
- 6.3.2 Polynomials and Polynomial-time Algorithms 312
- 6.3.3 Functions and Algorithms Related to Exponentials 316
- 6.3.4 The Limits of Computability 320
- 6.3.5 Asymptotic Analysis 321
- 6.3.6 Divide and Conquer 326
- 6.3.7 Nondeterministic Polynomial 329

6.4 Recurrence Relations 332
- 6.4.1 Introduction 332
- 6.4.2 Homogeneous Recurrence Relations 333
- 6.4.3 Nonhomogeneous Recurrence Relations 336

6.5 Miranda 341
- 6.5.1 Introduction 341
- 6.5.2 Command Level 341
- 6.5.3 Function Definitions 342
- 6.5.4 Types, Functions, and Declarations 344
- 6.5.5 Pattern Matching and Rewriting 346
- 6.5.6 A Programming Problem 348

17 Graphs and Trees 353
- 7.1 Introduction and Examples of Graph Modeling 354
- 7.2 Basic Definitions of Graph Theory 362
- 7.3 Paths, Reachability, and Connectedness 369
- 7.4 Computing Paths from a Matrix Representation of Graphs 377
- 7.5 Traversing Graphs Represented as Adjacency Lists 392
 - 7.5.1 Introduction 392
 - 7.5.2 Adjacency Lists Representation of Graphs 392
 - 7.5.3 Breadth-first Search 395
 - 7.5.4 Depth-first Search 398
 - 7.5.5 Dijkstra's Algorithm for Finding Minimum Paths 402
- 7.6 Trees and Spanning Trees 409
 - 7.6.1 Introduction 409
 - 7.6.2 Free Trees 409
 - 7.6.3 Spanning Trees 410
 - 7.6.4 Minimum Spanning Trees 416
7.7 Scheduling Networks 422
 7.7.1 Introduction 422
 7.7.2 A Project Management Model 422
 7.7.3 Topological Sorting 431

8 Formal Requirement Specification in Z 441
 8.1 Introduction 441
 8.2 Software Life Cycle 442
 8.3 Need for Formal Specifications 446
 8.4 Introduction to Z 447
 8.4.1 Introduction 447
 8.4.2 Alphabet and Lexical Elements 448
 8.4.3 Types and Declarations 449
 8.4.4 Specifying a System with Logic and Sets 450
 8.4.5 Schemas 454
 8.4.6 Relations 460
 8.4.7 Functions 466
 8.4.8 Sequences 472

9 Program Correctness Proofs 481
 9.1 Preliminary Concepts 482
 9.1.1 Introduction 482
 9.1.2 Programs and Codes 482
 9.1.3 Assertions 483
 9.1.4 Correctness 485
 9.2 General Rules Involving Preconditions and Postconditions 486
 9.2.1 Introduction 486
 9.2.2 Precondition Strengthening 487
 9.2.3 Postcondition Weakening 488
 9.2.4 Conjunction and Disjunction Rules 490
 9.3 Correctness Proofs in Loopless Code 493
 9.3.1 Introduction 493
 9.3.2 Assignment Statements 493
 9.3.3 Concatenation of Code 496
 9.3.4 The If-Statement 500
 9.4 Loops and Arrays 503
 9.4.1 Introduction 503
 9.4.2 A Preliminary While Rule 503
 9.4.3 The General While Rule 508
 9.4.4 Arrays 510
 9.4.5 Program Termination 515