Spectral Decompositions and Analytic Sheaves

Jörg Eschmeier
Department of Pure Mathematics
University of Leeds

Mihai Putinar
Department of Mathematics
University of California at Riverside

CLARENDON PRESS • OXFORD
1996
Contents

1. Review of spectral theory
 1.1 Classical spectral theories 1
 1.2 Local spectral theory 5
 1.3 Multivariable spectral theory 10
 1.4 Summary of the applications contained in the book 16
 1.5 References and comments 18

2. Analytic functional calculus via integral representations 21
 2.1 Parametrized complexes 23
 2.2 The Koszul complex 30
 2.3 Cauchy–Weil systems 35
 2.4 The Cauchy–Weil integral 42
 2.5 Joint spectrum and analytic functional calculus 51
 2.6 Analytic spectral mapping theorems for joint spectra 60
 2.7 References and comments 71

3. Topological homology 73
 3.1 Tensor products relative to a Fréchet algebra 74
 3.2 Inverse limits 83
 3.3 Direct limits and duality 91
 3.4 Abstract derived functors 95
 3.5 References and comments 96

4. Analytic sheaves 98
 4.1 Stein spaces and Stein algebras 98
 4.2 Analytic transversality 103
 4.3 Quasi-coherent analytic sheaves 109
 4.4 Fréchet analytic soft sheaves 115
 4.5 Banach coherent analytic Fréchet sheaves 123
 4.6 References and comments 131

5. Fréchet modules over Stein algebras 133
 5.1 Spectra of analytic Fréchet modules 134
 5.2 Spectral mapping theorem 139
 5.3 References and comments 145
6. Bishop's condition (β) and invariant subspaces 146
 6.1 Spectral decompositions and duality 147
 6.2 Bishop's condition (β) and decomposable resolutions 164
 6.3 Essentially decomposable systems 172
 6.4 Condition (β) and smooth resolutions 176
 6.5 Invariant subspaces 193
 6.6 References and comments 202

7. Applications to function theory 205
 7.1 Division lemmas 205
 7.2 Ideals of differentiable functions 210
 7.3 The maximal ideal space of certain algebras of analytic functions 215
 7.4 A pseudoconvexity criterion 224
 7.5 References and comments 226

8. Spectral analysis on Bergman spaces 228
 8.1 The Gleason problem 228
 8.2 Toeplitz operators with H^∞-symbol 236
 8.3 Analytically invariant subspaces 244
 8.4 Rigidity of Bergman submodules 252
 8.5 References and comments 255

9. Finiteness theorems in analytic geometry 257
 9.1 The Cartan–Serre theorem 257
 9.2 Relative nuclearity and perturbation lemmas 258
 9.3 Grauert's direct image theorem 264
 9.4 Semicontinuity theorems 268
 9.5 References and comments 275

10. Multidimensional index theory 276
 10.1 Fredholm complexes 277
 10.2 Essential Fredholm complexes 283
 10.3 Index theory of commutative tuples of operators 288
 10.4 Riemann–Roch theorem on complex spaces 305
 10.5 References and comments 315

Appendix 1. Locally convex spaces 317
Appendix 2. Homological algebra 329
Appendix 4. Sobolev spaces 341
Bibliography 345
Index 357