CONTENTS

Preface xvi
Introduction: Why Study Petrology? 1

PART I. IGNEOUS ROCKS 5

Chapter 1. Introduction to Igneous Environments 7
What Is Igneous Petrology? 7
Igneous Environments: Intrusive versus Extrusive 8
Small-Scale Features 12
Types of Intrusions 13
Sills 13
Laccoliths 13
Lopoliths 15
Dikes and Veins 16
Batholiths and Stocks 17
Methods of Emplacement of Intrusive Rocks 20
Types of Extrusions 22

Chapter 2. Igneous Minerals and Textures 33
Minerals of Igneous Rocks 33
Silica Minerals 33
Feldspars 33
Pyroxenes 35
Olivine 37
Feldspathoids 37
Amphiboles 37
Micas and Other Sheet Silicates 38
Other Silicates 38
Oxides, Sulfides, and Phosphates 39
Igneous Rock Textures and Structures 39
Degree of Crystallinity, Grain Size, and Grain Shape 39
Fabrics 39
Common Plutonic Rocks 45
Granite and Alkali Granite 45
Syenite and Alkali Syenite 45
Nepheline Syenite 52
CONTENTS

Monzonite 52
Diorite 53
Gabbro 53
Ultramafic Rocks 53

Common Volcanic Rocks 55
Rhyolite, Dacite, Obsidian, Vitrophyre, Pumice, Scoria 55
Trachyte 55
Phonolite 56
Latite 56
Andesite 57
Basalt 57

Chapter 3. Chemistry and Classification of Igneous Rocks 61

Physical Properties of Magma 61
Chemical Constituents of Igneous Rocks 62
Methods of Chemical Analysis 64
Wet Chemical Analysis 64
Atomic Absorption Spectrophotometry 64
X-Ray Emission or X-Ray Fluorescence (XRF) Spectroscopy 64
Electron Microprobe (EMP) and Proton-Induced X-Ray Emission (PIXE) 65
Inductively Coupled Plasma (ICP) Spectroscopy 65
Instrumental Neutron Activation Analysis (INAA) 65
Mass Spectrometry (MS) Methods 65
The Chemical Compositions of Igneous Rocks 66
Measuring and Estimating Mineralogy 66
Weight and Volume Modes 66
The CIPW Norm 67
Mineralogic Classification 67
The IUGS Classification System 68
Other Aspects of Classification 73
Chemical Classification 76
Silica Saturation 76
Alumina Content of Granites 76
Chemical Trends 76
Harker Diagrams 77
AFM (or FMA) Diagrams 77
Differentiation Index 78
Alkali-Lime Index 78
Larsen Index 78
Spider Diagrams 78
Assimilation and Fractional Crystallization (AFC) 78
Chapter 4. Crystallization of Magmas
Laboratory Experiments on Magmas
Equilibrium and the Phase Rule
Equilibrium
Phases
Components
The Phase Rule
Derivation of the Phase Rule
Two-Component Systems
Geometric-Topologic Properties
Equilibrium Crystallization
Two-Component Systems with an Incongruently Melting Phase
Geometric-Topologic Properties
Equilibrium Crystallization
Two-Component Systems with Complete Solid Solution
Ternary Systems
Simple Ternary Systems
Complex Ternary Systems

Chapter 5. Origin of Magmas by Melting of the Mantle and Crust
Melting in Binary Systems
Simple Binary Eutectic Systems
Binary Systems with Peritectics
Binary Systems with Complete Solid Solution
Melting in Ternary Systems
Simple Ternary Eutectic Systems
Ternary Systems with Solid Solution
Ternary Systems with Congruent Intermediate Compounds
Forsterite-Diopside-Silica: A Model for the Origin of Basaltic Magmas
Low-Pressure Phase Relations
High-Pressure Phase Relations
Albite-Orthoclase-Quartz: A Model for Melting and Crystallization of Granites
Low-Pressure Phase Relations
High-Pressure Phase Relations
Equilibrium and Fractional Melting: Do They Occur in Nature?

Chapter 6. Evolution of Magmas: Fractional Crystallization and Contamination
Fractional Crystallization
Binary Eutectic and Peritectic Systems
CONTENTS

Ternary Eutectic Systems 122
Volumetric Relationships 122

Layered Gabbroic Intrusions: A Natural Example of Fractional Crystallization 123
Crystallization Sequence in Layered Intrusions 124
Physical Characteristics of Cumulate Layers in Layered Intrusions 128
New Ideas Regarding Layered Intrusions 130

Magma Contamination 132
Physical and Chemical Access 132
Thermal and Energy Effects 134
Effects on Basaltic Magma Chemistry 134

Magma Mixing 135

Chapter 7. Petrology of the Mantle 137
Gross Vertical Structure of the Interior 137
Crust 138
Upper Mantle 138
Transition Zone 139
Lower Mantle, Outer Core, and Inner Core 139
Lithosphere and Asthenosphere 140
Physical Characteristics of the Mantle 140
Horizontal Density Heterogeneity 140
Temperature Distribution 140
Mantle Convection 142
Chemistry and Mineralogy of the Mantle and Core 143
Sources of Information 143
Estimates of Mantle Chemistry 145
Mantle Petrology 146
Petrologic Significance of the Asthenosphere 147

Chapter 8. Igneous Rocks of the Oceanic Lithosphere 151
The Nature of the Mid-Ocean Ridges 151
Petrographic and Chemical Characteristics of MORBs 156
Petrogenesis of Seafloor Basalts 158
Ocean Island Basalts and Related Rocks 162
Chemical and Mineralogic Characteristics
of Ocean Island Rocks 164
Petrogenesis of Ocean Island Magmas 165

Chapter 9. Igneous Rocks of Convergent Margins 169
Igneous Rocks of Convergent Oceanic Plates 170
Chemistry and Petrography of Island Arc Volcanics 172
Petrogenesis of Island Arc Magmas 174
Igneous Rocks of the Continental Margins 177
 The Ophiolite Suite 177
Continental Magmatic Arcs 180
Chemical Compositions and Petrography 183
Petrogenesis of Continental Arc Magmas 183
The Role of Secondary Melting: Introduction to the Granite Problem 185
Continent-Continent Collision 187

Chapter 10. Igneous Rocks of Continental Lithosphere 191
Continental Basalt Provinces 191
 Flood Basalts 191
 Layered Mafic Intrusions 195
 Komatiites 196
Continental Rifts 197
 Chemistry, Petrography, and Petrogenesis of Continental Rift Magmas 200
 Carbonatites 202
Anorogenic Granitoids 203
Anorthosites 206
 Lunar Anorthosites 207
 Archean Megacrystic Anorthosites 207
 Massif Anorthosites 207
Kimberlites and Lamproites 210

PART II. SEDIMENTARY ROCKS 215

Chapter 11. The Occurrence of Sedimentary Rocks 217
Destruction of the Rock Record 218
Types of Sedimentary Rocks 219
 Mudrocks 219
 Sandstones 219
 Carbonate Rocks 219
Depositional Basins and Plate Tectonics 220
 Oceanic Basins 223
 Arc-Trench System Basins 223
 Continental-Collision Basins 225
 Basins in Displaced Terranes 226
 Grabens Along Continental Margins 226
 Intracontinental Basins 227
Climate 228
Chapter 12. Weathering and Soils

Reactions and Products 231
The Structure of Clay Minerals 233
Soils 234
- Paleosols 234
- Duricrusts 235

Chapter 13. Conglomerates and Sandstones

Field Observations 241
- Grain Size 241
 - Dispersal Pattern and Transport Distance 241
 - Textural Maturity 242
 - Mineral Composition 243
 - Conglomerates 243
 - Sandstones 246
 - Quartz 246
 - Feldspar 249
 - Lithic Fragments 253
 - Accessory Minerals 254
 - Mica 256
 - Glauconite 257
 - Classification 257
 - Interpretive Petrology 258
 - Tectonics and Detrital Mineral Composition 258
 - Climate and Detrital Mineral Composition 260
 - Transporting Agent, Depositional Environment, and Detrital Mineral Composition 261
 - Recycling of Sediment 262

Chapter 14. Diagenesis of Sandstones

Compaction and Cementation 265
- Quartz Cement 266
- Calcite Cement 270
 - Geochemistry of Calcite Cement 270
 - Comparative Geochemistry of Quartz and Calcite 272
 - Hematite Cement 272
 - Clay Mineral Cement 276
 - Zeolite Cement 278
 - Albitization 278
 - Calcitization 279
 - Plate Tectonic Controls of Diagenesis 279
Chapter 15. Mudrocks

Field Observations 281
 Textures 281
 Structures 281
 Colors 283

Laboratory Studies 284
Composition 284
 Clay Minerals 284
 Quartz 285
 Feldspar 286
 Carbonate Minerals 286
 Organic Matter 286
 Bentonite 286

Ancient Mudrocks 286
 Paleocurrent Indicators 286
 Petrology 287
 Black Shales 289
 Black Shales, Paleoceanography, and Plate Motions 290

Chapter 16. Limestones and Dolostones

Textures 295
Grains 296
 Fossils 296
 Ooids 297
 Peloids 298
 Limeclasts 298
Matrix 300
Grain Size, Sorting, and Rounding 301
Insoluble Residues 301
Classification 302
Structures 303
 Current-Generated Structures 303
 Geopetal Structures 304
 Lamination 304
Calcium Carbonate Depositional Sites 306
 Platform and Shelf Carbonates 306
 Micritic Mud Mounds 307
 Organic Reefs 307
 Deep-Sea Carbonates 308
 Lacustrine Carbonates 309
Calcium Carbonate Equilibria 310
Diagenesis 311
 Cementation 311
 Later Diagenesis 312
 Secondary Porosity 315

Dolostones 317
 Field Observations 318
 Laboratory Studies 319
 Aggregate Dolostone Textures 320

Environments of Formation 321
 Deep-Burial Dolostone 323

Geochemistry of Dolomite 323

Chapter 17. Other Types of Sedimentary Rocks 325

Evaporites 325
 Abundance 325
 Mineralogy 325
 Distinguishing Marine from Nonmarine Evaporites 326
 Distinguishing Primary from Secondary Features 327
 Sedimentary Structures 327
 Laboratory Studies 328
 Ochoan Series, Delaware Basin 329
 Devonian Duperow Formation, Williston Basin 330
 Origin of Giant Marine Deposits 334
 Summary of Evaporites 335

Cherts 335
 Field Observations 335
 Chert Nodules 335
 Bedded Cherts at Plate Margins 335
 Cherts in Saline, Alkaline Lakes 336
 Laboratory Studies 337
 Chemical Considerations 338
 Summary of Cherts 339

Iron-Rich Rocks 339
 Cherty Iron Formations 339
 Iron Formations and Free Oxygen in the Precambrian 341
 Ironstones 343
 Summary of Iron-Rich Rocks 344

Phosphorites 345
 Field Observations 345
 Laboratory Observations 345
 Chemical Considerations 346
PART III. METAMORPHIC ROCKS

Chapter 18. Metamorphism and Metamorphic Rocks

Definition of Metamorphism
Types of Metamorphism
Origin of Metamorphic Petrology
Metamorphic Textures and Structures
Metamorphic Recrystallization
 Initiation of Metamorphism
 Increase in Grain Size
 Growth of Porphyroblasts
Common Metamorphic Rock Types
 Mudrocks
 Calcareous Rocks
 Mafic and Ultramafic Rocks
 Other Rock Types
Field Observations of Metamorphic Rocks
 Regional Metamorphic Rocks
 Contact Metamorphic Rocks
 Identification of Rock Types

Chapter 19. Isograds, Metamorphic Facies, and Pressure-Temperature Evolution

Metamorphic Isograds
Metamorphic Facies and Facies Series
 Metamorphic Facies
 Facies Series
Pressure-Temperature-Time Models for Metamorphism
 A Thermal Model for Contact Metamorphism
 A Thermal Model for Regional Metamorphism
 Thermal Evolution of Granulite Facies Terranes
Influence of Tectonics on Metamorphic P-T-t Paths
 Convergent Margins with Subduction
 Continent-Continent Collision

Chapter 20. Assemblages, Reactions, and Equilibrium

Components, Phases, and Assemblages
The Concept of Equilibrium
Application of Equilibrium Concepts to Metamorphic Rocks
Reactions and the Phase Rule 399
Graphical Representation of Assemblages and Reactions 402
 Fundamental Principles 402
 More Complex Systems: ACF, A'KF, and APM Diagrams 405

Chapter 21. Controls of Metamorphic Reactions 411
 Environmental Controls 411
 Temperature and Pressure 411
 Compositions of Metamorphic Fluids 413
 Fluid Inclusions 413
 Metamorphic Reactions 414
 Reaction Mechanisms 417
 Types of Metamorphic Reactions 419
 Discontinuous (Univariant) Reactions 420
 Continuous (Divariant) Reactions and
 Distribution Coefficients 421
 Solid-Solid Reactions 422
 Dehydration and Decarbonation Reactions 423

Chapter 22. Metamorphism of Mafic and Ultramafic Igneous Rocks 429
 Seafloor Metamorphism and Hydrothermal Alteration 429
 Burial Metamorphism 431
 Low- and Medium-Pressure Regional Metamorphism 434
 Greenschist Facies 434
 Amphibolite Facies 436
 Granulite Facies 441
 High-Pressure Regional Metamorphism 445
 Blueschist Facies 445
 Eclogite Facies 446

Chapter 23. Metamorphism of Aluminous Clastic Rocks 449
 Aluminous Rock Compositions 449
 Very Low Grade Metamorphism 451
 Metamorphism at Moderate MFG: The Barrovian Sequence 451
 Chlorite Zone 453
 Biotite Zone 454
 Garnet Zone 455
 Staurolite Zone 456
 Kyanite Zone 457
 Sillimanite Zone 459