Modern Astrodynamics

FUNDAMENTALS AND PERTURBATION METHODS

Victor R. Bond and
Mark C. Allman

PRINCETON UNIVERSITY PRESS
CONTENTS

Preface ix

I Fundamentals 1

1. Background 3
 1.1 Introduction 3
 1.2 Notation and Units 3
 1.3 Time 9

2. The Two-Body Problem 12
 2.1 Newton's Laws 12
 2.2 Physics of the Two-Body Problem 13
 2.2.1 Uniform Spherical Mass Potential 15
 2.3 Definition of an Integral 19
 2.4 Integrals of the Two-Body Problem 19
 2.4.1 Area Integral c 21
 2.4.2 Energy Integral h 22
 2.4.3 Laplacian Integral P 23
 2.4.4 Relationship among the Integrals 24
 2.4.5 Summary of Integrals Derived 26
 2.4.6 Application: The Abort Problem 26
 2.4.7 Kepler's Equation 27

3. Kepler's Laws 31
 3.1 Kepler's First Law 32
 3.2 Kepler's Second Law 34
 3.3 Kepler's Third Law 36
 3.3.1 Planetary Mass Determination 37

4. Methods of Computation 40
 4.1 Position/Velocity in Integrals 40
CONTENTS

4.2 Position/Velocity—True Anomaly 42
4.3 Position/Velocity—Eccentric Anomaly 44
4.4 Solution of Kepler’s Equation 45
4.5 Computation of Position/Velocity 47
 4.5.1 Algorithm No. 1: Computing Position and Velocity 47
 4.5.2 Algorithm No. 2: Kepler’s Equation—Solution 48
4.6 Orbital Elements 49
4.7 Other Orbital Element Systems 56
 4.7.1 Delaunay Elements 56
 4.7.2 Poincaré Elements 56

5. The \(f \) and \(g \) Functions 58
 5.1 \(f \) and \(g \) Functions—Development 59
 5.2 \(f \) and \(g \) Functions—True Anomaly 63
 5.3 \(f \) and \(g \) Functions—Eccentric Anomaly 66
 5.3.1 Algorithm No. 3: Computation of Delta-E 70
 5.4 \(f \) and \(g \) Functions—Universal Variable 71
 5.4.1 Algorithm No. 4: Using Universal Variables 76
 5.4.2 Algorithm No. 5: Kepler’s Equation—Solution 77
 5.5 \(f \) and \(g \) Functions in Time 78

6. Two-Point Boundary Value Problems 81
 6.1 Introduction 81
 6.2 Lambert’s Problem 81
 6.3 Universal Variable 83
 6.3.1 Algorithm No. 6: Solution of Lambert’s Problem 86
 6.4 Linear Terminal Velocity Constraint 88

7. Applications 91
 7.1 Interplanetary Trajectories 91
 7.1.1 Heliocentric Phase 92
 7.1.2 Algorithm No. 7: V-Infinity Vectors Solution 93
 7.1.3 Planetocentric Phase 93
 7.1.4 Planetary Flyby (Gravity Turn) 94
 7.2 Space Shuttle Ascent Targets 100
 7.3 Two-Body Anytime-Deorbit Solution 103
 7.4 Relative Motion 107
 7.4.1 Radial Displacement 108
 7.4.2 Varying Eccentricity 110
 7.4.3 Periodic Motion 110
 7.4.4 Rotation about the \(Q \) Axis 114
II Perturbation Methods

8. Perturbation Theory

8.1 Introduction

8.1.1 Explanation of Perturbation Theory
8.1.2 Elementary Example—Harmonic Oscillator

8.2 Poisson’s Method

8.2.1 Elementary Example—Harmonic Oscillator

8.3 Lagrange Variation of Parameters

8.3.1 Elementary Example—Harmonic Oscillator

8.4 Two-Body Integrals of Motion

8.5 Interpretation of ̇c, ̇é, and ̇N

8.6 The Perturbed Two-Body Problem

8.6.1 Energy and Semi-Major Axis
8.6.2 Angular Momentum
8.6.3 Inclination
8.6.4 The Node Angle Ω
8.6.5 Laplace Vector

8.7 Some Partially Solved Problems

8.7.1 Conservative Potentials
8.7.2 Oblate Planet Potential
8.7.3 Time-Dependent Potential
8.7.4 Derivatives for a Rotating Planet
8.7.5 Derivatives for Perturbation by a Third Body
8.7.6 Tethered Satellite Problem
8.7.7 Drag Problem

9. Special Perturbation Methods

9.1 Propagation Error

9.2 Regularization

9.3 Regularizing the Two-Body Problem

9.3.1 The Jacobi Integral
9.3.2 Change to the Jacobi Integral
9.3.3 The Two-Body Solution
9.3.4 Introduction of δ and γ
9.3.5 The Significance of δ and γ

9.4 Summary of the Elements

9.5 Sperling-Burdet Approach

9.5.1 Equations for the Spatial Elements
9.5.2 Equations for the Temporal Elements
9.6 Summary of the Equations 177
9.7 Sperling-Burdet Method—Examples 178
 9.7.1 Oblate Earth Plus the Moon 179
 9.7.2 Stable Libration Points 180
 9.7.3 Continuous Radial Thrust 182

10. Runge-Kutta Methods 184
 10.1 Introduction 184
 10.2 Error Classification 185
 10.3 Runge-Kutta Fixed Step 188
 10.3.1 Runge-Kutta First Order 189
 10.3.2 Runge-Kutta Second Order 190
 10.4 Runge-Kutta Variable Step 192
 10.4.1 The RKF1(2) 194
 10.4.2 Algorithm No. 8: RKF4(5) 195

11. Types of Perturbations 198
 11.1 Third-Body Perturbations 199
 11.1.1 Development of the Perturbation 200
 11.1.2 Battin's Approach 203
 11.1.3 Derivation of f(q) 204
 11.1.4 Case When Position is Large in Magnitude 205
 11.2 Potential Function for a Planet 207
 11.2.1 Case of a Satellite about the Earth 211

Appendixes 215

À. Coordinate Transformations 217
 A.1 Rotation of Coordinate Systems 217
 A.2 Transformation to the Two-Body System 220

B. Hyperbolic Motion 225

C. Conic Sections 230

D. Transfer-Angle Resolution 233

E. Stumpff Functions 236

F. Orbit Geometry 239

References 243

Index 247