PROCEEDINGS OF
CONFERENCE ON NASA CENTERS
FOR COMMERCIAL
DEVELOPMENT OF SPACE
(NASA CCDS)

EDITORS

Mohamed S. El-Genk
Institute for Space and Nuclear
Power Studies
University of New Mexico

Raymond P. Whitten
NASA Senior Manager,
CCDS Program
NASA Headquarters

ORGANIZED BY:
INSTITUTE FOR SPACE AND NUCLEAR POWER STUDIES
UNIVERSITY OF NEW MEXICO

Co-sponsored by:

BALLISTIC MISSILE DEFENSE
ORGANIZATION
NATIONAL AERONAUTICS AND SPACE
ADMINISTRATION
HEADQUARTERS
LEWIS RESEARCH CENTER
UNITED STATES DEPARTMENT OF ENERGY
LOS ALAMOS NATIONAL LABORATORY
SANDIA NATIONAL LABORATORIES
UNITED STATES AIR FORCE
PHILLIPS LABORATORY
WRIGHT LABORATORY

In cooperation with:

AMERICAN INSTITUTE OF AERONAUTICS AND
ASTRONAUTICS
AMERICAN INSTITUTE OF CHEMICAL ENGINEERS
HEAT TRANSFER AND ENERGY CONVERSION
DIVISION
AMERICAN NUCLEAR SOCIETY
ANS TRINITY SECTION
AMERICAN SOCIETY OF MECHANICAL ENGINEERS
NUCLEAR ENGINEERING DIVISION
HEAT TRANSFER DIVISION
ASTM, COMMITTEE E-10 ON NUCLEAR
TECHNOLOGY AND APPLICATIONS
INTERNATIONAL ASTRONAUTICAL FEDERATION
NEW MEXICO ACADEMY OF SCIENCE

Albuquerque Hilton Hotel
Albuquerque, New Mexico
January 8-12, 1995

AMERICAN INSTITUTE OF PHYSICS NEW YORK
TABLE OF CONTENTS

[1] COMMUNICATIONS I

<table>
<thead>
<tr>
<th>William Glenn, Chair</th>
<th>James R. Ramler, Co-Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida Atlantic University</td>
<td>NASA Lewis Research Center</td>
</tr>
<tr>
<td>Boca Raton, FL</td>
<td>Cleveland, OH</td>
</tr>
</tbody>
</table>

Dynamic Routing in Hybrid Networks with Integrated Voice and Data Traffic
John S. Baras and Shihwei Chen, University of Maryland, College Park, MD

Satellites in the National Information Infrastructure
Timothy J. Kirkwood and S. Joseph Campanella, University of Maryland, College Park, MD

Enhancement of Cellular Service Via the Use of Satellite Capacity
Deepak Ayyagari and Anthony Ephremides, University of Maryland, College Park, MD

Faster than Fiber: Advantages and Challenges of LEO Communications Satellite Systems
S. Joseph Campanella and Timothy J. Kirkwood, University of Maryland, College Park, MD

Hybrid Network Architectures: A Framework for Comparative Analysis
John S. Baras, S. Joseph Campanella, and Timothy Kirkwood, University of Maryland, College Park, MD

[2] COMMUNICATIONS II

<table>
<thead>
<tr>
<th>William Glenn, Chair</th>
<th>James R. Ramler, Co-Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida Atlantic University</td>
<td>NASA Lewis Research Center</td>
</tr>
<tr>
<td>Boca Raton, FL</td>
<td>Cleveland, OH</td>
</tr>
</tbody>
</table>

Cell Loss Probabilities in Input Queuing Crossbar Switches Via Light Traffic Derivatives
Young B. Kim and Armand M. Makowski, University of Maryland, College Park, MD

Optimal Strategies for Admitting Voice and Data Traffic in Networks of LEO Satellites using CDMA
Evaggelos Geraniotis, Yu-Wen Chang, and Wen-Bin Yang, University of Maryland, College Park, MD

Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite
Daniel Friedman, Sonjai Gupta, Chuanguo Zhang, and Anthony Ephremides, University of Maryland, College Park, MD

Hybrid Internet Access
Vivek Arora, John S. Baras, Douglas Dillon, Aaron Falk, and Narin Suphasindhu, University of Maryland, College Park, MD

Next Generation Network Management Technology
John S. Baras, George C. Atallah, Mike Ball, Shravan Goli, Ramesh K. Karne, Steve Kelley, Harsha Kumar, Catherine Plaisant, Nick Roussopoulos, Ben Schneiderman, Mulugu Srinivasarao, Kostas Statathos, and Marko Teittinen, University of Maryland, College Park, MD and David Whitefield, Hughes Network Systems, Germantown, MD

Satellite Distribution of Digital Compressed Video Audio and Data
William E. Glenn and Henry Helmken, Florida Atlantic University, Boca Raton, FL

21
27
33
39
45
51
57
63
69
75
83
TABLE OF CONTENTS

[3] ADVANCED ELECTRONICS I

Raymond Askew, Chair
Auburn University
Auburn, AL

R. Joseph Sovie, Co-Chair
NASA Lewis Research Center
Cleveland, OH

Dual Use Power Supply Development
Alan C. Kolb and Bryan E. Strickland, Maxwell Laboratories, Inc., San Diego, CA
91

Power Supplies for Pulsed Laser Systems
B. Ed Strickland, Maxwell Laboratories, San Diego, CA, and R. Mark Nelms, Auburn University, Auburn, AL
103

Fault Classification by Neural Networks and Fuzzy Logic
Chwan-Hwa "John" Wu, Chi-Hwen Li, and Huilin Shih, Auburn University, Auburn, AL and Chris C. Alexion, Norman L. Ovick, and John H. Murphy, Westinghouse Electric Corporation, Pittsburgh, PA
113

Electrically Conductive Composite Lubricants
Bruce J. Tatarchuk, Ken A. Wehrman, Yang Zhang, Teh-Shing Lee, and Gopal A. Krishnagopalan, Auburn University, Auburn, AL
125

The Development of Silicon Carbide-Based Power Electronics Devices
Richard H. Hopkins and John F. Perkins, Westinghouse Science and Technology Center, Pittsburgh, PA
131

[4] ADVANCED ELECTRONICS II

Raymond Askew, Chair
Auburn University
Auburn, AL

R. Joseph Sovie, Co-Chair
NASA Lewis Research Center
Cleveland, OH

High Temperature OHMIC and SCHOTTKY Contacts to N-Type 6H-SIC using Nickel
John R. Williams, Michael J. Bozack, Tamara Isaacs-Smith, Eric D. Luckowski, and Christopher Meadows, Auburn University, Auburn, AL and John Croston and Paul G. McMullin, WEC Science and Technology Center, Pittsburgh, PA
137

Multichip Modules: Electronic Controller Applications for Chrysler Electronics
John L. Evans, Larry E. Bosley, and Chris S. Romanczuk, Chrysler Corporation, Huntsville, AL and R. Wayne Johnson, Auburn University, AL
145

Multichip Module Technology for Automotive Application
R. Wayne Johnson, Auburn University, Auburn, AL and John L. Evans and Larry Bosley, Chrysler/ Huntsville Electronics, Huntsville, AL
151

The Automated Wafer Cartridge System for the Wake Shield Facility
R. Joseph Sovie, NASA Lewis Research Center, Cleveland, OH and Ray Askew, Space Power Institute, Auburn, AL
159

Thrust Vector Control Using Electric Actuation
Robert T. Bechtel and David K. Hall, Marshall Space Flight Center, AL
161

Low Duty-Cycle Pulsed Power Actuation Applications
Stephen A. Merryman and W. Todd Owens, Auburn University, Auburn, AL
167
TABLE OF CONTENTS

[5] COMMERCIAL APPLICATIONS OF SPACE BIOTECHNOLOGY

Lawrence J. DeLucas, Chair
University of Alabama at Birmingham
Birmingham, AL

Kenneth R. Taylor, Co-Chair
Marshall Space Flight Center
Huntsville, AL

Crystallographic Studies of Insulin Crystals Grown in Microgravity
G. David Smith, Ewa Ciszak, and Walter Pangborn, Medical Foundation of Buffalo, Inc., Buffalo, NY
Page 111

Macroscale Production of Crystalline Interferon Alpha-2b in Microgravity on STS-52
Tattanahalli L. Nagabhushan and Paul Reichert, Schering-Plough Research Institute, Kenilworth, NJ; Marianna M. Long and Lawrence J. DeLucas The University of Alabama at Birmingham, Birmingham, AL; and Charles E. Bugg, BioCryst Pharmaceuticals, Inc., Birmingham, AL
Page 183

Glovebox Experiments with Malic Enzyme on USML-1
Howard M. Einspahr, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ; Laura L. Clancy and Barry C. Finzel, The Upjohn Company, Kalamazoo, MI; Sibyl H. Munson, University of Wisconsin, Madison, WI; Lawrence J. DeLucas, University of Alabama, Birmingham, AL; and Jaganathan Rao, Paul F. Cook, and Ben G. Harris, Texas College of Osteopathic Medicine, Fort Worth, TX
Page 193

Microgravity Access as a Means for Testing Therapeutic Pharmaceutics
Robert J. Zimmerman, Chiron Corporation, Emeryville, CA and Steven J. Simske, University of Colorado, Boulder, CO
Page 199

Commercial Applications in Biomedical Processing in the Microgravity Environment
Terry C. Johnson, Kansas State University, Manhattan, KS and Floyd Taub, SynchroCell, Inc., College Park, MD
Page 205

[6] SPACE POWER

Frederick R. Best, Chair
Texas A&M University
College Station, TX

Henry Davis, Co-Chair
NASA Johnson Space Center
Houston, TX

Mathematical Modeling of a Nickel/Metal-Hydride Cell
Pauline De Vidts, Texas A&M University, College Station, TX and Ralph E. White, University of South Carolina, Columbia, SC
Page 211

The NASA LeRC Regenerative Fuel Cell System Testbed Program for Government and Commercial Applications
Thomas M. Maloney, NYMA, Inc. Cleveland, OH; Paul R. Prokopius, NASA Lewis Research Center, Cleveland, OH; and Gerald E. Voecks, Jet Propulsion Laboratory, Pasadena, CA
Page 221

Improved ZnS Windows for Silicon Solar Cells with Arsenic Interlayers
Xiaochuan Zhou, Greg F. Spencer, Feng Li, and Wiley P. Kirk, Texas A&M University, College Station, TX
Page 227

Cadmium Telluride Films for Lightweight Solar Cells for Space and Terrestrial Applications
Vijay P. Singh, Gregory B. Lush, Ramon Santiesteban, John C. McClure, and Hugo Chavez, University of Texas, El Paso, TX
Page 235

Commercialization of Proton Exchange Membrane (PEM) Fuel Cell Technology
Navin Goel, Alok Pant, and Gary Sera, Texas A&M University, College Station, TX
Page 243

Advanced Nickel-Metal Hydride Cell Development at Hughes: a Joint Work with U. S. Government
Hong S. Lim and David F. Pickett, Hughes Industrial Electronics Company, Torrance, CA; Joseph F. Stockel, U.S. Central Intelligence Agency, Washington, DC; and John J. Smithrick, NASA Lewis Research Center, Cleveland, OH
Page 249
TABLE OF CONTENTS

[7] AUTOMATION AND ROBOTICS TECHNOLOGIES FOR COMMERCIAL SPACE PROCESSING AND LIFE SCIENCES ACTIVITIES

Raymond J. Bula, Chair
University of Wisconsin-Madison
Madison, WI

Jon D. Erickson, Co-Chair
Lyndon B. Johnson Space Center
Houston, TX

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Sensing for Space Processing and Automation</td>
<td>Thomas M. Crabb and Robert C. Richter, Orbital Technologies Corporation, Madison, WI and Elaine Hinnman-Sweeney, Marshall Space Flight Center, Huntsville, AL</td>
<td>255</td>
</tr>
<tr>
<td>Shared, Multi-Use Remote Robotics Facilities</td>
<td>Thomas M. Crabb, Ronald R. Teeter, and Jon G. Frank, Orbital Technologies Corporation, Madison, WI</td>
<td>263</td>
</tr>
<tr>
<td>Precursor to Lunar Resource Commercialization: Preliminary Design of a Robotic Roving Vehicle Payload to Survey Regolith Volatile Gas Concentrations</td>
<td>Bruce Bartos, Neil Duffie, Igor Sviatoshinsky, Layton Wittenberg, and Gerald Kulcinski, University of Wisconsin, Madison, WI</td>
<td>271</td>
</tr>
<tr>
<td>A Distributed Architecture for On-Orbit Laboratory Automation and Robotics using COTS Components</td>
<td>Paul Olszyn, Michael Dobbs, and David Conrad Environmental Research Institute of Michigan, Ann Arbor, MI</td>
<td>285</td>
</tr>
<tr>
<td>The Automated Wafer Cartridge System for the Wake Shield Facility</td>
<td>Michael Dobbs, Advanced Modular Power Systems, Ann Arbor, MI</td>
<td>297</td>
</tr>
<tr>
<td>Automation and Robotics Requirements for Advanced Life Support Systems in Commercial Space Activities</td>
<td>Jon D. Erickson, Richard E. Eckelkamp, and Daniel J. Barta, NASA Johnson Space Center, Houston, TX and James L. Dragg, Lockheed Engineering and Sciences, Houston, TX</td>
<td>299</td>
</tr>
</tbody>
</table>

[8] MATERIALS FOR PROCESSING AND APPLICATION IN SPACE

Alex Ignatiev, Chair
University of Houston
Houston, TX

Sandor Lehoczky, Co-Chair
NASA Marshall Space Flight Center
Huntsville, AL

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-V Compound Semiconductor Film Growth in Low Earth Orbit on the Wake Shield Facility</td>
<td>Charles Horton, Alex Ignatiev, Mark Sterling, Abdelhak Bensoula, Alex Freundlich, and Steve Pei, University of Houston, TX and Ron Sega, NASA Johnson Space Center, Houston, TX</td>
<td>305</td>
</tr>
<tr>
<td>Surface Processing of Semiconductor Materials with Fast Atomic Oxygen</td>
<td>John C. Gregory and Ganesh N. Raikar, University of Alabama, Huntsville, AL; Palmer N. Peters, NASA Marshall Space Flight Center, Huntsville, AL; and Jon B. Cross and Mark A. Hoffbauer, Los Alamos National Laboratory, Los Alamos, NM</td>
<td>313</td>
</tr>
<tr>
<td>Vacuum and Flow Field Results from the Wake Shield Flight Experiment</td>
<td>Mona Desai, Rebecca Forest, Charles Horton, Alex Ignatiev, Mark Sterling, and John Strozier, University of Houston, Houston, TX and Charles Justiz and Ron Sega, NASA Johnson Space Center, Houston, TX</td>
<td>323</td>
</tr>
<tr>
<td>Thermophysical Property and Related Data Needs for Casting Process Design</td>
<td>Ruel A. Overfelt, Auburn University, Auburn, AL</td>
<td>331</td>
</tr>
<tr>
<td>A Survey of Research Results of the Consortium for Materials Development in Space</td>
<td>Francis C. Wessing, University of Alabama, Huntsville, AL</td>
<td>341</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

REMOTE SENSING

John Bossier, Chair
Ohio State University
Columbia, OH

Vincent Salomonson, Co-Chair
Goddard Space Flight Center
Greenbelt, MD

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Future of Landsat: Implications for Commercial Development</td>
<td>353</td>
</tr>
<tr>
<td>Vincent V. Salomonson, James R. Irons, and Darrel L. Williams, Goddard Space Flight Center, Greenbelt, MD</td>
<td></td>
</tr>
<tr>
<td>Commercial Feasibility of Traffic Data Collection Using Satellite Imagery</td>
<td>361</td>
</tr>
<tr>
<td>Carolyn J. Merry, Mark R. McCord, and John D. Bossier, Ohio State University, Columbus, OH</td>
<td></td>
</tr>
<tr>
<td>Digital Orthophotography for Natural Resource Management</td>
<td>367</td>
</tr>
<tr>
<td>Bryan J. Logan, Photo Science Inc., Gaithersburg, MD</td>
<td></td>
</tr>
<tr>
<td>Commercial Use of Space Technologies for Precision Farming</td>
<td>373</td>
</tr>
<tr>
<td>George A. May and Kenneth Gilmore, Stennis Space Center, MS and Bill Holmes, Holmes Brothers Farms, Oran, MO</td>
<td></td>
</tr>
<tr>
<td>Resources21™ - A New Commercial Space Based Enterprise</td>
<td>377</td>
</tr>
<tr>
<td>Keith J. Draper and John A. Grace, Space Remote Sensing Center, Stennis Space Center, MS</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX A - PROCEEDINGS OF 12TH SYMPOSIUM ON SPACE NUCLEAR POWER AND PROPULSION; CONFERENCE ON ALTERNATIVE POWER FROM SPACE (APFS); and CONFERENCE ON ACCELERATOR-DRIVEN TRANSMUTATION TECHNOLOGIES AND APPLICATIONS (ADTTA) 381