New Monte Carlo Methods with Estimating Derivatives

G.A. Mikhailov

///VSP///
Utrecht, The Netherlands, 1995
CONTENTS

Preface

1. **Estimation of integrals and solution of integral equations**
 1.1. Estimation of integrals
 1.2. Recurrent estimates of Monte Carlo method for the solution to an integral equation of the second kind
 1.3. Variance of the basic unbiased estimate
 1.4. Branching chains and solutions to nonlinear equations
 1.5. Cost of various algorithms for solving integral equations
 1.6. Solving problems with stochastic parameters

2. **Estimation of derivatives**
 2.1. Vector Monte Carlo algorithms
 2.2. Calculation derivatives and perturbations with respect to parameters
 2.3. Calculation of parametric derivatives in a special case

3. **Solution of the Helmholtz equation**
 3.1. The 'walk on spheres' process
 3.2. The use of probabilistic representation
 3.3. The use of integral representations
 3.4. New algorithms for variable $c(r)$
 3.5. 'Walk on spheres' algorithms for solving Helmholtz equation in the n-dimensional space
 3.6. Solving difference equations by the Monte Carlo method
 3.7. Additional remarks

4. **Solution of metaharmonic equations and elliptic systems**
 4.1. Solution of metaharmonic equations by calculating the parametric derivatives
 4.2. Solving metaharmonic equations of the form $\Delta^{\nu}u + cu = (-1)^{\nu'}g$
 4.3. Two-dimensional case
 4.4. Calculation of the covariance function of the solution to the biharmonic equation
 4.5. Monte Carlo solution of Dirichlet problem for elliptic systems with variable parameters
5. Monte Carlo methods with calculating parametric derivatives in the radiation transport theory

5.1 Monovelocity transfer process 107
5.2 Calculations of derivatives and perturbations 113
5.3 Multivelocity radiation transport process with fission 120
5.4 Calculation the derivatives with respect to cross-sections 124
5.5 Calculating critical values of the parameters: the critical density, the time constant of particle multiplication, the effective multiplication factor 128
5.6 Numerical examples 130
5.7 Monte Carlo calculations of critical systems with equalization of generations 135
5.8 Solving some inverse and stochastic problems of the transfer theory 140
5.9 The 'free-path' estimate for solving the transfer equation in total 144

6. Solution of nonlinear problems

6.1 Solution of nonlinear integral equations 147
6.2 Solution of Dirichlet problem for elliptic equations 149
6.3 Minimization of cost of Monte Carlo methods in iterative solution of nonlinear problems 154
6.4 Iterative solution of a model kinetic equation 158

Appendix. Some simulation algorithms

A.1 Numerical simulation of random variables 164
A.2 Numerical simulation of random fields 170
A.3 Remarks about simulation algorithms with the use of multiprocessor systems 180

References 183