TABLE OF CONTENTS

Preface ix
Introduction and Results 1

Chapter I. Theory of Analytic Semigroups 8
1.1 Generation Theorem for Analytic Semigroups 8
1.2 Fractional Powers 19
1.3 The Linear Cauchy Problem 31
1.4 The Semilinear Cauchy Problem 38

Chapter II. Sobolev Imbedding Theorems 46
2.1 Hölder Spaces and Sobolev Spaces 46
2.2 Interpolation Theorems 48
2.3 Imbeddings of the Spaces $H^{m,p}(\mathbb{R}^n)$ 74
2.4 Imbeddings of the Spaces $H^{m,p}(\Omega)$ 86

Chapter III. L^p Theory of Pseudo-Differential Operators 93
3.1 Generalized Sobolev Spaces and Besov Spaces 93
3.2 Fourier Integral Operators 97
3.2A Symbol Classes 97
3.2B Phase Functions 99
3.2C Oscillatory Integrals 100
3.2D Fourier Integral Operators 102
3.3 Pseudo-Differential Operators 102

Chapter IV. L^p Approach to Elliptic Boundary Value Problems 109
4.1 The Dirichlet Problem 109
4.2 Formulation of a Boundary Value Problem 111
4.3 Reduction to the Boundary 115
4.4 Operator Π 120

Chapter V. Proof of Theorem 1 122
5.1 Regularity Theorem for Problem (*) 122
5.2 Uniqueness Theorem for Problem (*) 126
5.3 Existence Theorem for Problem (*) 127
5.3A Proof of Theorem 5.7 128
5.3B Proof of Proposition 5.10 134

Chapter VI. Proof of Theorem 2 137

Typeset by \texttt{AMS-\LaTeX}
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 A Priori Estimates</td>
<td>137</td>
</tr>
<tr>
<td>6.2 Generation of Analytic Semigroups</td>
<td>142</td>
</tr>
<tr>
<td>Chapter VII. Proof of Theorems 3 and 4</td>
<td>148</td>
</tr>
<tr>
<td>7.1 Fractional Powers and Imbedding Theorems</td>
<td>148</td>
</tr>
<tr>
<td>7.2 Semilinear Initial-Boundary Value Problems</td>
<td>153</td>
</tr>
<tr>
<td>7.2A Proof of Theorem 3</td>
<td>153</td>
</tr>
<tr>
<td>7.2B Proof of Theorem 4</td>
<td>153</td>
</tr>
<tr>
<td>Appendix: The Maximum Principle</td>
<td>157</td>
</tr>
<tr>
<td>References</td>
<td>159</td>
</tr>
<tr>
<td>Index</td>
<td>161</td>
</tr>
</tbody>
</table>