ELASTICITY AND GEOMECHANICS

R. O. DAVIS
University of Canterbury

A. P. S. SELVADURAI
McGill University

CAMBRIDGE UNIVERSITY PRESS
## Contents

**Preface**  
*page ix*

1 *Some ideas from the theory of elasticity*  
1.1 Introduction  
1.2 The notion of a continuum  
1.3 Deformations of a continuum  
1.4 Deformation and strain  
1.5 Volumetric strain  
1.6 Compatibility of strains  
1.7 Stress  
1.8 Principal stresses  
1.9 Stress invariants  
1.10 Equilibrium equations  
1.11 Formulation of problems  
  Exercises  
  References  

2 *The elastic constants*  
2.1 Hooke’s law  
2.2 Young’s modulus and Poisson’s ratio  
2.3 Shear modulus  
2.4 Bulk modulus and Lamé constants  
2.5 Stress and strain deviators  
2.6 Relationships between elastic constants  
2.7 Bounds on elastic constants  
2.8 Determination of elastic constants  
2.9 Laboratory tests  
2.10 Field tests
2.11 Incompressible elasticity 70
Exercises 72
References 75

3 Fundamental solutions 76
3.1 Boussinesq's problem 76
3.2 Flamant's problem 84
3.3 Kelvin's problem 88
3.4 Cerrutti's problem 91
3.5 Mindlin's problem 94
3.6 Other fundamental solutions 98
3.7 Gravity stresses, stress functions 100
Exercises 107
References 110

4 Applications of fundamental solutions 112
4.1 Introduction 112
4.2 Uniform circular load on homogeneous half-space 115
4.3 Uniform loads of other shapes, homogeneous half-space 123
4.4 Non-uniform loads, homogeneous half-space 129
4.5 Rigid foundations 131
4.6 Plane-strain problems 138
4.7 Settlements in layered soils 145
4.8 Consolidation and settlement 148
4.9 Applications to in situ testing 151
4.10 Gravity stresses in earth structures 155
Exercises 162
References 165

Appendices 167
A The compatibility conditions 167
B Cauchy's stress principle 171
C Traction vector on an arbitrary plane 173
D Uniqueness of solutions in classical elasticity theory 176
E Saint-Venant's principle 180
F Principles of virtual work 188
G Betti's reciprocal theorem 191
Index 199